

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

FRICK TYSTVDC 2B (S/N U154300323)

Refrigeration Compressor

USPI ALT-68 SC (--- GAL)

DIAGNOSIS

Recommendation

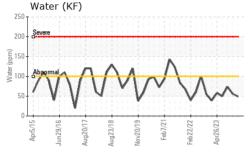
Resample at the next service interval to monitor.

Wear

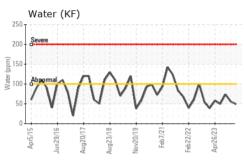
All component wear rates are normal.

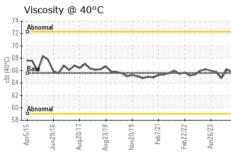
Contamination

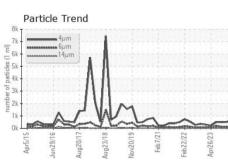
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

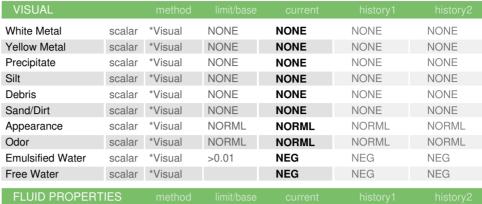

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

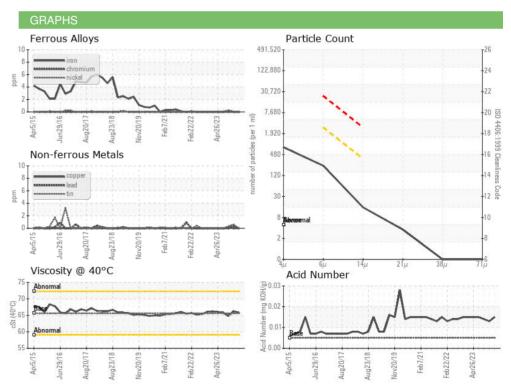

2015 Jun/2016 Aug/2017 Aug/2018 Nov/2019 Feb/2022 Apr/2022 Apr/2023						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0006608	USP0005460	USP0002822
Sample Date		Client Info		27 Apr 2024	31 Jan 2024	26 Oct 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	0	0	0
Chromium	ppm	ASTM D5185m	>2	0	0	<1
Nickel	ppm	ASTM D5185m		0	0	<1
Titanium	ppm	ASTM D5185m		<1	<1	<1
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	0	1
Lead	ppm	ASTM D5185m	>2	0	<1	0
Copper	ppm	ASTM D5185m	>8	0	0	<1
Tin	ppm	ASTM D5185m	>4	0	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	<1
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	<1
Manganese	ppm	ASTM D5185m		<1	0	0
Magnesium	ppm	ASTM D5185m		0	0	0
Calcium	ppm	ASTM D5185m		0	0	0
Phosphorus	ppm	ASTM D5185m		0	0	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	22	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	0	<1	<1
Sodium	ppm	ASTM D5185m		1	0	2
Potassium	ppm	ASTM D5185m	>20	0	0	2
Water	%	ASTM D6304	>0.01	0.004	0.005	0.007
ppm Water	ppm	ASTM D6304	>100	49	56	73.9
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		680	509	494
Particles >6µm		ASTM D7647	>2500	202	98	114
Particles >14μm		ASTM D7647	>320	13	9	15
Particles >21µm		ASTM D7647	>80	3	3	4
Particles >38µm		ASTM D7647	>20	0	0	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>/18/15	17/15/11	16/14/10	16/14/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.015	0.013	0.014




OIL ANALYSIS REPORT



Par 8k T	ticle 1	rend						
7k -	4µ 6µ 14	m m µm	1					
(m 1) 6 k - 4 k -			H					
agunu 2k -	A	لر	W	7	^	_		
Ok Apr5/15	Jun29/16	Aug20/17	Aug23/18	Nov20/19	Feb7/21	Feb22/22	Apr26/23	manti



I LOID I NOI LIN	IILO	memou			HISTOLAL	HISTOLYZ
Visc @ 40°C	cSt	ASTM D445	65.6	65.8	66.2	64.8

O/		
- .		
Color		

Certificate 12367

Laboratory Sample No.

Lab Number : 06161555 Unique Number : 10996978

Test Package : IND 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : USP0006608

Received : 26 Apr 2024 **Tested** : 30 Apr 2024 Diagnosed

: 30 Apr 2024 - Jonathan Hester

TYSON TVDC-RUSSELVILLE-USP

HWY 64 EAST RUSSELLVILLE, AR US 72801

Contact: JOHN BRADFORD

To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

F: (479)964-8190

Report Id: TYSRUSTVDC [WUSCAR] 06161555 (Generated: 05/04/2024 05:41:22) Rev: 1

Contact/Location: JOHN BRADFORD - TYSRUSTVDC

T: (479)968-5110