

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

FES TYSVER 7 (S/N MK1/V0658)

Refrigeration Compressor

USPI 1009-68 SC (130 GAL)

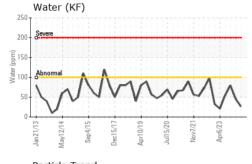
Recommendation

Resample at the next service interval to monitor.

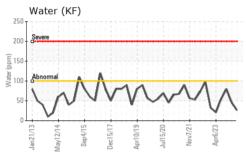
All component wear rates are normal.

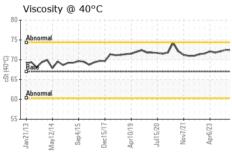
Contamination

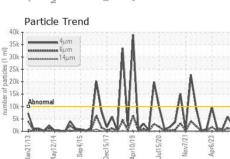
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.


Fluid Condition

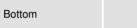
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


		12013 May20	14 Sep2015 Dec2017	Apr2019 Jul2020 Nov2021 A	pr2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0006619	USP0005707	USP0001318
Sample Date		Client Info		17 Apr 2024	16 Jan 2024	07 Oct 2023
Machine Age	hrs	Client Info		141705	139667	44404
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	14	12	7
Chromium	ppm	ASTM D5185m	>2	0	0	0
Nickel	ppm	ASTM D5185m		0	0	0
Titanium	ppm	ASTM D5185m		<1	0	<1
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	0	0
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m	>8	0	0	0
Tin	ppm	ASTM D5185m	>4	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	1
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		<1	<1	0
Magnesium	ppm	ASTM D5185m		0	0	0
Calcium	ppm	ASTM D5185m		0	<1	0
Phosphorus	ppm	ASTM D5185m		0	0	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	9	0	22
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	2	<1
Sodium	ppm	ASTM D5185m		1	0	<1
Potassium	ppm	ASTM D5185m	>20	0	0	0
Water	%	ASTM D6304	>0.01	0.003	0.004	0.007
ppm Water	ppm	ASTM D6304	>100	26	46	79.9
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	2079	5931	801
Particles >6µm		ASTM D7647	>2500	583	1278	179
Particles >14µm		ASTM D7647	>320	31	39	15
Particles >21µm		ASTM D7647	>80	4	5	3
Particles >38µm		ASTM D7647	>20	1	0	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	18/16/12	20/17/12	17/15/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.013	0.014

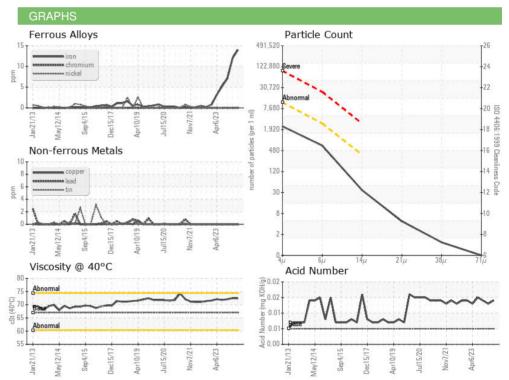



OIL ANALYSIS REPORT

40k - 35k - 30k -	4µ 6µ 14	im im im		11			
20k - 15k - Abno	ormal			JA	1	Λ	١ ٨ ،
Jan21/13	May12/14	Sep4/15	Dec15/17	Apr10/19	Juli 5/20	Nov7/21	Apri6/23



VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
	150	ام مالم مما	12 - 25 /1		la i a t a un u d	histow.0


Visc @ 40°C	Visc @ 40°C	cSt	ASTM D445	67	72.4	72.5	72.1
-------------	-------------	-----	-----------	----	------	------	------

Color

SAMPLE IMAGES

Certificate 12367

Laboratory Sample No.

Lab Number : 06161565

Test Package : IND 2

: USP0006619 Unique Number : 10996988

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 26 Apr 2024 **Tested** : 30 Apr 2024

Diagnosed : 30 Apr 2024 - Doug Bogart TYSON W.B. - VERNON-USP

700 WHEELER ST VERNON, TX US 76384

T: (940)553-2747

F: (940)552-2196

Contact: RUSSEL SCOTT

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: RUSSEL SCOTT - TYSVER