

OIL ANALYSIS REPORT

HPU04 **HTS14**

Hydraulic System

CASTROL BRAYCO MICRONIC 882 (--- GAL)

DIAGNOSIS

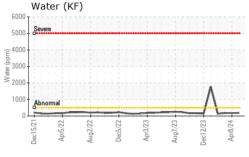
Recommendation

Resample at the next service interval to monitor.

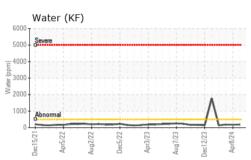
All component wear rates are normal.

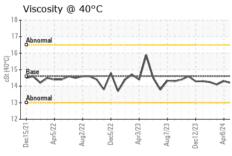
Contamination

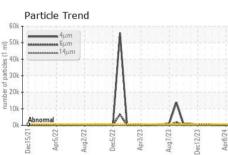
The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The water content is negligible. The system and fluid cleanliness is acceptable.

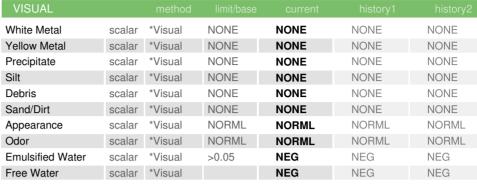

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


L)		ic2021 Apr2	022 Aug2022 Dec2022	Apr2023 Aug2023 Dec202	3 Apr2024	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0896082	WC0896047	WC0896051
Sample Date		Client Info		06 May 2024	08 Apr 2024	06 Mar 2024
Machine Age	mths	Client Info		0	0	0
Oil Age	mths	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	0	0	0
Chromium	ppm	ASTM D5185m	>20	0	0	0
Nickel	ppm	ASTM D5185m	>20	0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>20	0	0	0
Lead	ppm	ASTM D5185m	>20	0	0	0
Copper	ppm	ASTM D5185m	>20	0	0	0
Tin	ppm	ASTM D5185m	>20	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m		0	0	0
Calcium	ppm	ASTM D5185m		0	0	0
Phosphorus	ppm	ASTM D5185m		709	735	691
Zinc	ppm	ASTM D5185m		5	0	<1
Sulfur	ppm	ASTM D5185m		0	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	0	0
Sodium	ppm	ASTM D5185m		<1	<1	1
Potassium	ppm	ASTM D5185m	>20	<1	<1	0
Water	%	ASTM D6304	>0.05	0.018	0.017	0.018
ppm Water	ppm	ASTM D6304		184	176	181
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>640	300	353	205
Particles >6µm		ASTM D7647	>160	55	52	59
Particles >14µm		ASTM D7647	>20	10	7	5
Particles >21µm		ASTM D7647	>4	3	2	1
Particles >38µm		ASTM D7647	>3	0	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>16/14/11	15/13/10	16/13/10	15/13/10
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.014	0.755	0.793	0.771




OIL ANALYSIS REPORT

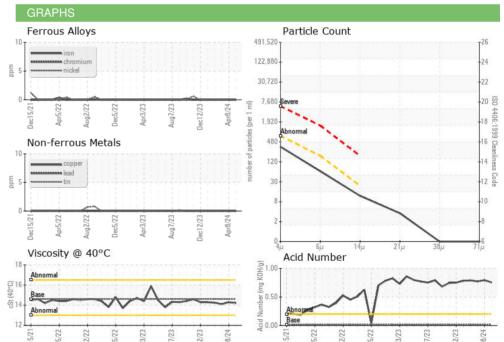


Par ^{60k}	ticle T	rend					
€ 50k -		m ım	A				
\$40k - \$30k - \$3							
20k -			-/1				
122	ormal		h		Λ		
)ec15/21	Apr5/22	Aug2/22	lec5/22	Apr3/23	Aug7/23	ec12/23	Apr8/24

FLUID PROPERT	IES	method	limit/base	current	history1	history2
Specific Gravity		*ASTM D1298		0.851	0.851	0.851
Visc @ 40°C	cSt	ASTM D445	14.6	14.2	14.3	14.1

CAMD	1 🗆 11	MAGES
SAIVIE		WAGES

Color



Laboratory Sample No. Lab Number

Unique Number : 11020588

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : WC0896082

: 06174535

Received **Tested** Diagnosed

: 09 May 2024 : 13 May 2024 : 13 May 2024 - Angela Borella

2010 WALDROP INDUSTRIAL BLVD DUBLIN, GA US 31021 Contact: TRENT MCADAMS

PARKER AEROSPACE

trent.mcadams@parker.com

Test Package : IND 2 (Additional Tests: KF, SpecGravity) Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

T: (478)275-4030

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

F: