

OIL ANALYSIS REPORT

Area (EQ4281) E East Side Operation Center (S/N 21814704)

Diesel Engine

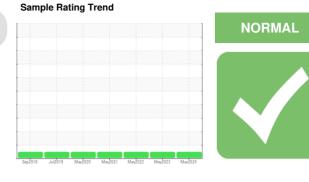
Fluid PETRO CANADA DURON UHP 5W40 (15 GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

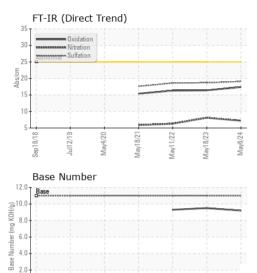

All component wear rates are normal.

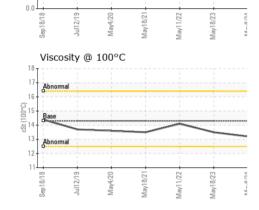
Contamination

There is no indication of any contamination in the oil.

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.




Sample Date Client Info 08 May 2024 18 May 2023 11 May 2023 Machine Age hrs Client Info 545 520 481 Oil Age hrs Client Info 64 58 5 Oil Changed Client Info 64 58 5 Oil Changed Client Info 64 58 5 Oil Changed Client Info 64 58 5 Out Changed Client Info 64 58 5 CONTAMINATION method Imit/base current History1 History2 Fuel WC Method >0.2 NEG NEG NEG Water ppm ASTM D5165m >20 <1	SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Machine Age hrs Client Info 545 520 481 Oil Age hrs Client Info 64 58 5 Oil Changed Client Info 64 58 5 Sample Status Imit/base current Not Changed NorMAL NorMAL CONTAMINATION method imit/base current Nistory1 history1 history2 Fuel WC Method >3.0 <1.0 <1.0 <1.0 <1.0 Water WC Method >0.2 NEG NEG NEG NEG WEAR METALS method imit/base current history1 history2 fron ppm ASTM 05165m<>20 <1 <1 <1 frainum ppm ASTM 05165m<>20 1 <1 <1 Silver ppm ASTM 05165m<>20 1 <1 <1 Auminum ppm ASTM 05165m<>20 1 <1 <1 Lead ppm	Sample Number		Client Info		WC0934065	WC0810883	WC0696104
Oil Age hrs Client Info 64 58 5 Oil Changed Client Info Not Changd Not Changd Changed Changed Not RMAL NORMAL	Sample Date		Client Info		08 May 2024	18 May 2023	11 May 2022
Oil Changed Sample Status Client Info Not Changd NORMAL Not Changd NORMAL Not Changd NORMAL Changed NORMAL CONTAMINATION method imit/base current history1 history2 Fuel WC Method >0.2 NEG NEG NEG Water WC Method >0.2 NEG NEG NEG WEAR METALS method imit/base current history1 history2 Iron ppm ASIM D5185m >20 <1 0 <1 Nickel ppm ASIM D5185m >20 <1 0 <1 Nickel ppm ASIM D5185m >20 <1 <1 <1 Aluminum ppm ASIM D5185m >20 1 <1 <1 Aluminum ppm ASIM D5185m >20 1 <1 <1 Copper ppm ASIM D5185m >20 1 <1 <1 Tin ppm ASIM D5185m >20 1 <1 <1 Copper ppm ASIM D5185m >20 1 <1 <1 Copper ppm ASIM D5185m >20 1 <1 <1 Copper	Machine Age	hrs	Client Info		545	520	481
Sample Status method imit/base normat. NORMAL NORMAL NORMAL CONTAMINATION method imit/base current history1 history2 Fuel WC Method >3.0 <1.0 <1.0 <1.0 Water WC Method >0.2 NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >90 4 3 2 Chromium ppm ASTM D5185m >20 c1 0 <1 Nickel ppm ASTM D5185m >20 1 <1 <1 Silver ppm ASTM D5185m >20 1 <1 <1 Auminum ppm ASTM D5185m >20 1 <1 <1 <1 Copper ppm ASTM D5185m >20 1 <1 <1 <1 AsTM D5185m 0 0 0 <	Oil Age	hrs	Client Info		64	58	5
CONTAMINATION method imit/base current history1 history2 Fuel WC Method >3.0 <1.0 <1.0 <1.0 <1.0 Water WC Method >2.0 NEG NEG NEG Glycol WC Method NEG NEG NEG NEG WEAR METALS method imit/base current history1 history2 Iron ppm ASTM D5185m >20 <1 0 <1 Nickel ppm ASTM D5185m >2 0 <1 0 Silver ppm ASTM D5185m >2 1 <1 <1 1 Lead ppm ASTM D5185m >20 1 <1 <1 1 Astm D5185m >40 2 2 1 <1 <1 1 Lead ppm ASTM D5185m 0 0 0 0 0 Astm D5185m 0 0 0 0 </th <th>Oil Changed</th> <th></th> <th>Client Info</th> <th></th> <th>Not Changd</th> <th>Not Changd</th> <th>Changed</th>	Oil Changed		Client Info		Not Changd	Not Changd	Changed
Fuel WC Method >3.0 <1.0	Sample Status				NORMAL	NORMAL	NORMAL
Water WC Method >0.2 NEG NEG NEG NEG Glycol WC Method NEG NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >90 4 3 2 Chromium ppm ASTM D5185m >2 0 0 0 Nickel ppm ASTM D5185m >2 0 <1 0 Silver ppm ASTM D5185m >2 0 1 <1 1 Lead ppm ASTM D5185m >20 1 <1 <1 1 Tin ppm ASTM D5185m >15 <1 <1 <1 1 Antimony ppm ASTM D5185m 0 0 0 0 0 Cadmium ppm ASTM D5185m 65 52 49 49 Manganese ppm ASTM D5185m	CONTAMINATION		method	limit/base	current	history1	history2
Glycol WC Method NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >20 <1 0 <1 Nickel ppm ASTM D5185m >20 <1 0 <1 Nickel ppm ASTM D5185m >2 0 <1 0 Silver ppm ASTM D5185m >2 0 <1 <1 <1 Lead ppm ASTM D5185m >20 1 <1 <1 <1 Lead ppm ASTM D5185m >15 <1 <1 <1 <1 Autininum ppm ASTM D5185m >15 <1 <1 <1 <1 Autinum ppm ASTM D5185m 0 0 0 0 0 Copper ppm ASTM D5185m 65 52 49 49 49 Manadum ppm <t< th=""><th>Fuel</th><th></th><th>WC Method</th><th>>3.0</th><th><1.0</th><th><1.0</th><th><1.0</th></t<>	Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >90 4 3 2 Chromium ppm ASTM D5185m >20 <1 0 <1 Nickel ppm ASTM D5185m >2 0 <1 0 Silver ppm ASTM D5185m >2 1 <1 <1 Aluminum ppm ASTM D5185m >2 1 <1 <1 Lead ppm ASTM D5185m >2 1 <1 <1 Copper ppm ASTM D5185m >20 1 <1 <1 Yanadium ppm ASTM D5185m >15 <1 <1 <1 Vanadium ppm ASTM D5185m 0 0 0 0 Addition ppm ASTM D5185m 65 55 70 74 Barium ppm ASTM D5185m 0 0 0	Water		WC Method	>0.2	NEG	NEG	NEG
Iron ppm ASTM D5185m >90 4 3 2 Chromium ppm ASTM D5185m >20 <1 0 <1 Nickel ppm ASTM D5185m >2 0 <1 0 Silver ppm ASTM D5185m >2 1 <1 <1 Aluminum ppm ASTM D5185m >20 1 <1 <1 Lead ppm ASTM D5185m >20 1 <1 <1 Copper ppm ASTM D5185m >20 1 <1 <1 Tin ppm ASTM D5185m >20 1 <1 <1 Copper ppm ASTM D5185m 15 <1 <1 <1 Cadmium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 65 52 49 49 Manganese ppm ASTM D5185m 160 1117 1065	Glycol		WC Method		NEG	NEG	NEG
Chromium ppm ASTM D5185m >20 <1	WEAR METALS		method	limit/base	current	history1	history2
Nickel ppm ASTM D5185m >2 0 0 0 Titanium ppm ASTM D5185m >2 0 <1 0 Silver ppm ASTM D5185m >2 1 <1 <1 Aluminum ppm ASTM D5185m >20 1 <1 <1 Lead ppm ASTM D5185m >40 2 2 1 <1 Copper ppm ASTM D5185m >40 2 2 1 <1 Antimony ppm ASTM D5185m >40 2 0 0 0 Antimony ppm ASTM D5185m >15 <1 <1 <1 1 Antimony ppm ASTM D5185m 0 <1 0 0 0 0 0 Cadmium ppm ASTM D5185m 165 52 49 49 49 Manganese ppm ASTM D5185m 160 1045 1003	Iron	ppm	ASTM D5185m	>90	4	3	2
Titanium ppm ASTM D5185m >2 0 <1	Chromium	ppm	ASTM D5185m	>20	<1	0	<1
Silver ppm ASTM D5185m >2 1 <1	Nickel	ppm	ASTM D5185m	>2	0	0	0
Aluminum ppm ASTM D5185m >20 1 <1	Titanium	ppm	ASTM D5185m	>2	0	<1	0
Lead ppm ASTM D5185m >40 2 2 1 Copper ppm ASTM D5185m >330 1 1 1 Tin ppm ASTM D5185m >15 <1 <1 <1 Antimony ppm ASTM D5185m >15 <1 <1 <1 Antimony ppm ASTM D5185m 0 0 0 0 Vanadium ppm ASTM D5185m 0 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 65 55 70 74 Barium ppm ASTM D5185m 0 0 0 0 Maganese ppm ASTM D5185m 0 <1 <1 0 Marganese ppm ASTM D5185m 820 1097 1065 1095 Phosphorus ppm ASTM D5185m 1260 1350 <td< th=""><th>Silver</th><th>ppm</th><th>ASTM D5185m</th><th>>2</th><th>1</th><th><1</th><th><1</th></td<>	Silver	ppm	ASTM D5185m	>2	1	<1	<1
Copper ppm ASTM D5185m >330 1 1 1 Tin ppm ASTM D5185m >15 <1 <1 <1 Antimony ppm ASTM D5185m 0 0 0 Vanadium ppm ASTM D5185m 0 0 0 Cadmium ppm ASTM D5185m 65 65 70 74 Boron ppm ASTM D5185m 65 65 70 74 Barium ppm ASTM D5185m 65 52 49 49 Maganese ppm ASTM D5185m 0 <1 <1 0 Maganesium ppm ASTM D5185m 160 1045 1003 1016 Calcium ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 25 4 3 5 <th>Aluminum</th> <th>ppm</th> <th>ASTM D5185m</th> <th>>20</th> <th>1</th> <th><1</th> <th></th>	Aluminum	ppm	ASTM D5185m	>20	1	<1	
Tin ppm ASTM D5185m >15 <1	Lead	ppm	ASTM D5185m	>40	2	2	1
Antimony ppm ASTM D5185m Vanadium ppm ASTM D5185m 0 0 0 Cadmium ppm ASTM D5185m 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 65 65 70 74 Barium ppm ASTM D5185m 0 0 0 0 Molybdenum ppm ASTM D5185m 65 52 49 49 Manganese ppm ASTM D5185m 160 1045 1003 1016 Calcium ppm ASTM D5185m 1160 1117 1034 1088 Zinc ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m >25 4 3 5 Sodium ppm ASTM D5185m >20 1 0 0	Copper	ppm	ASTM D5185m	>330	1	1	1
Number Pprod ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m current history1 history2 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 65 65 70 74 Barium ppm ASTM D5185m 0 0 0 0 0 Manganese ppm ASTM D5185m 65 52 49 49 Manganese ppm ASTM D5185m 0 <1	Tin	ppm	ASTM D5185m	>15	<1	<1	<1
Cadmium ppm ASTM D5185m <1	Antimony	ppm	ASTM D5185m				
ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 65 65 70 74 Barium ppm ASTM D5185m 0 0 0 0 Molybdenum ppm ASTM D5185m 65 52 49 49 Manganese ppm ASTM D5185m 0 <1 <1 0 Magnesium ppm ASTM D5185m 1160 1045 1003 1016 Calcium ppm ASTM D5185m 1160 1117 1034 1088 Zinc ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 1 1 0 INFRA-RED method limit/base 1	Vanadium	ppm	ASTM D5185m		0	0	0
Boron ppm ASTM D5185m 65 65 70 74 Barium ppm ASTM D5185m 0 0 0 0 Molybdenum ppm ASTM D5185m 65 52 49 49 Manganese ppm ASTM D5185m 0 <1 <1 0 Magnesium ppm ASTM D5185m 1160 1045 1003 1016 Calcium ppm ASTM D5185m 1160 1117 1034 1088 Zinc ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 4 3 5 Sodium ppm ASTM D5185m >20 1 0 1 INFRA-RED method limit/base curr	Cadmium	ppm	ASTM D5185m		<1	0	0
Barium ppm ASTM D5185m 0 0 0 0 0 0 Molybdenum ppm ASTM D5185m 65 52 49 49 Manganese ppm ASTM D5185m 0 <1 <1 0 Magnesium ppm ASTM D5185m 1160 1045 1003 1016 Calcium ppm ASTM D5185m 820 1097 1065 1095 Phosphorus ppm ASTM D5185m 820 1097 1065 1095 Phosphorus ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 1 0 1 INFRA-RED	ADDITIVES		method	limit/base	current	history1	history2
Molybdenum ppm ASTM D5185m 65 52 49 49 Manganese ppm ASTM D5185m 0 <1 <1003 1016 Magnesium ppm ASTM D5185m 1160 1045 1003 1016 Calcium ppm ASTM D5185m 820 1097 1065 1095 Phosphorus ppm ASTM D5185m 1160 1117 1034 1088 Zinc ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 1 0 1 INFRA-RED ppm ASTM D5185m >20 1 0 1 INFRA-RED method limit/base current history1 history2 Soot % % 'ASTM D7624 <th>Boron</th> <th>ppm</th> <th>ASTM D5185m</th> <th>65</th> <th>65</th> <th>70</th> <th>74</th>	Boron	ppm	ASTM D5185m	65	65	70	74
Manganese ppm ASTM D5185m 0 <1	Barium	ppm	ASTM D5185m	0	0	0	0
Magnesium ppm ASTM D5185m 1160 1045 1003 1016 Calcium ppm ASTM D5185m 820 1097 1065 1095 Phosphorus ppm ASTM D5185m 1160 1117 1034 1088 Zinc ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 4 3 5 Sodium ppm ASTM D5185m >20 1 1 0 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/.1mm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.1mm *ASTM	Molybdenum	ppm			52	49	49
Calcium ppm ASTM D5185m 820 1097 1065 1095 Phosphorus ppm ASTM D5185m 1160 1117 1034 1088 Zinc ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 4 3 5 Sodium ppm ASTM D5185m >20 1 1 0 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/cm< *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.imm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base cu	Manganese	ppm	ASTM D5185m	0	<1	<1	
Phosphorus ppm ASTM D5185m 1160 1117 1034 1088 Zinc ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 4 3 5 Sodium ppm ASTM D5185m >25 4 3 5 Potassium ppm ASTM D5185m >20 1 1 0 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/rm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/lim *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit	Magnesium	ppm		1160	1045		
Zinc ppm ASTM D5185m 1260 1350 1332 1239 Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 4 3 5 Sodium ppm ASTM D5185m >25 4 3 5 Potassium ppm ASTM D5185m >20 1 0 0 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/cm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.tmm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414<	Calcium	ppm	ASTM D5185m	820	1097		
Sulfur ppm ASTM D5185m 3000 4288 3999 3182 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 4 3 5 Sodium ppm ASTM D5185m >25 4 3 5 Potassium ppm ASTM D5185m >20 1 1 0 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/cm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.tmm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414 >25 17.4 16.4 16.3	Phosphorus	ppm	ASTM D5185m	1160	1117		
CONTAMINANTSmethodlimit/basecurrenthistory1history2SiliconppmASTM D5185m>25435SodiumppmASTM D5185m555PotassiumppmASTM D5185m>20110INFRA-REDmethodlimit/basecurrenthistory1history2Soot %%*ASTM D7844>60.10.10.1NitrationAbs/cm*ASTM D7624>207.28.16.3SulfationAbs/.imm*ASTM D7415>3019.118.718.6FLUID DEGRADATIONmethodlimit/basecurrenthistory1history2OxidationAbs/.imm*ASTM D7414>2517.416.416.3	Zinc	ppm	ASTM D5185m			1332	
Silicon ppm ASTM D5185m >25 4 3 5 Sodium ppm ASTM D5185m 5 5 5 Potassium ppm ASTM D5185m >20 1 1 0 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/cm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.tmm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414 >25 17.4 16.4 16.3	Sulfur	ppm	ASTM D5185m	3000	4288	3999	3182
Sodium ppm ASTM D5185m 5 5 Potassium ppm ASTM D5185m >20 1 1 0 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/cm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.1mm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 17.4 16.4 16.3					current	history1	history2
Potassium ppm ASTM D5185m >20 1 1 0 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/cm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.1mm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 17.4 16.4 16.3	Silicon			>25			
INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/cm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.tmm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414 >25 17.4 16.4 16.3		ppm			5	5	5
Soot % % *ASTM D7844 >6 0.1 0.1 0.1 Nitration Abs/cm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.1mm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 17.4 16.4 16.3	Potassium	ppm	ASTM D5185m	>20	1	1	0
Nitration Abs/cm *ASTM D7624 >20 7.2 8.1 6.3 Sulfation Abs/.1mm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 17.4 16.4 16.3	INFRA-RED		method	limit/base	current	history1	history2
Sulfation Abs/.1mm *ASTM D7415 >30 19.1 18.7 18.6 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 17.4 16.4 16.3	Soot %	%	*ASTM D7844	>6		0.1	0.1
FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 17.4 16.4 16.3	Nitration	Abs/cm	*ASTM D7624	>20	7.2	8.1	6.3
Oxidation Abs/.1mm *ASTM D7414 >25 17.4 16.4 16.3	Sulfation	Abs/.1mm	*ASTM D7415	>30	19.1	18.7	18.6
	FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Base Number (BN) mg KOH/g ASTM D2896 11.0 9.2 9.5 9.3	Oxidation	Abs/.1mm	*ASTM D7414	>25	17.4	16.4	16.3
	Base Number (BN)	mg KOH/g	ASTM D2896	11.0	9.2	9.5	9.3

Submitted By: SCOTT TRAIL

OIL ANALYSIS REPORT

nd)	VISUAL		method	limit/base	current	history1	history2	
	White Metal	scalar	*Visual	NONE	NONE	NONE	NONE	
	Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE	
	Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE	
	Silt	scalar	*Visual	NONE	NONE	NONE	NONE	
	Debris	scalar	*Visual	NONE	NONE	NONE	NONE	
The supervision of the supervisi	Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE	
8/21 - /22 -		scalar	*Visual	NORML	NORML	NORML	NORML	
May18/21 May11/22 May18/23	Appearance Odor	scalar	*Visual	NORML	NORML	NORML	NORML	
- 2 2	Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG	
	Free Water	scalar	*Visual	20.2	NEG	NEG	NEG	
· · · · · · · · · · · · · · · · · · ·	FLUID PROPER		method	limit/base		history1	history2	
	Visc @ 100°C	cSt	ASTM D445	14.3	13.2	13.5	14.1	
	GRAPHS	COL	AOTW D443	14.0	10.2	10.0	14.1	
	Iron (ppm)				Lead (ppm)			
	250				Severe			
May18/21 May11/22 May18/23	a 200 -							
Ma Ma	E 150 100 - Abnormal			L L	60 - 40 - <mark>Abnormal</mark>			
C	50 -				20			
	0							
	Sep18/18 Jul12/19 May4/20	May18/21	May11/22 May18/23	May8/24	Sep18/18	May4/20 May18/21	May11/22 May18/23 May8/24	
	Sep	May	May	Ma			May Ma	
	Aluminum (ppm)				Chromium (pp	om)		
	50 40 Severe				Severe			
	10							
22 -	20 - Abnormal			udd	Abnormal			
May18/21 May11/22 May18/23					1.			
2 2 2	10-				10			
	Sep18/18 1	8/21-	8/23 .	May8/24	Sep18/18 1	May4/20 - May18/21 -	/lay11/22 - /lay18/23 - May8/24 -	
	Sep 1: Jul1: May	May18/21	May11/22 May18/23	May	Sep 1	May4/20 May18/21	May11/22 May18/23 May8/24	
	Copper (ppm)				Silicon (ppm)			
	400 Severe				80 Severe	I I		
	300 -				60			
	툡 200 -			udd				
	100 -				20 - Abnormal			
	0				0			
	Sep18/19 Jul12/19	May18/21	May11/22 May18/23	May8/24	Sep18/18 -	May4/20 May18/21	May1 1/22 May1 8/23 May8/24	
	ਭ ਼ੋ ≦ Viscosity @ 100°		Mar	Ň	ङ्ख्य Base Number	M Ma	Mar Mar	
	18 T				0 T Page			
	Abnormal			Base Number (mg KOH/g)	.0-			
	3 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			B G				
				- quint 4	.0 -			
	12			ase 2	.0			
		21	13		1.0 +++	21+	23	
	Sep18/18 Jul12/19	May18/21	May11/22 May18/23	May8/24	Sep18/18 Jul12/19	May4/20 May18/21	May1 1/22 May1 8/23 May8/24	
TESTING LABORATORY Unique	atory : WearCheck USA - 50 e No. : WC0934065 umber : 06176877 Number : 11022930	: WearCheck USA - 501 Madison Ave., Cary, NC 27513 MONROE COUNTY WATER A : WC0934065 Received : 13 May 2024 4799 DE : 06176877 Tested : 14 May 2024 ROCHE r : 11022930 Diagnosed : 14 May 2024 - Sean Felton						
	ackage : MOB 1 (Additional T			-			: SCOTT TRAIL	
	report, contact Customer Ser						rail@mcwa.com	
	ds that are outside of the ISO						: (585)775-5257 E·	

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

В

F: