

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

KAESER ASD 40 4018527 (S/N 1397)

Component Compressor

Fluid KAESER SIGMA (OEM) S-460 (--- QTS)

Recommendation

Resample at the next service interval to monitor.

Wear

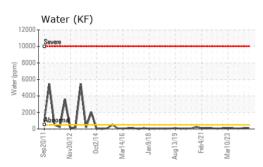
All component wear rates are normal.

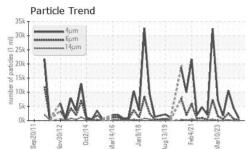
Contamination

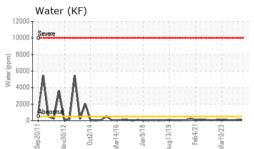
The amount and size of particulates present in the system are acceptable. There is no indication of any contamination in the oil.

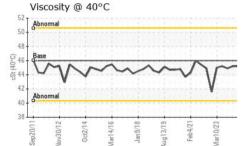
Fluid Condition

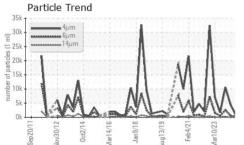
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

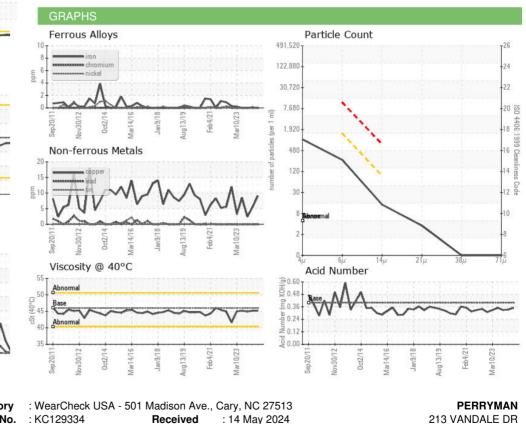

						1.1.1	÷	144	
inizia de la composición de la						in daan	tin i	n n n	
						in inte			
10.1			111						1
		100							ė.
21 Mar2023	Feb2021	2019	Διισ	Jan201	Mar2016	Oct2014	v2012	Ne	2011




SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		KC129334	KC127547	KC05964633
Sample Date		Client Info		02 May 2024	18 Jan 2024	19 Sep 2023
Machine Age	hrs	Client Info		65636	64356	63137
Oil Age	hrs	Client Info		6000	0	0
Oil Changed		Client Info		Changed	N/A	N/A
Sample Status				NORMAL	NORMAL	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	0	<1	0
Chromium	ppm	ASTM D5185m	>10	0	0	0
Nickel	ppm	ASTM D5185m	>3	0	0	0
Titanium	ppm	ASTM D5185m	>3	0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>10	0	0	0
Lead	ppm	ASTM D5185m	>10	0	0	0
Copper	ppm	ASTM D5185m	>50	9	6	2
Tin	ppm	ASTM D5185m	>10	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m	90	0	0	<1
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m	90	4	9	34
Calcium	ppm	ASTM D5185m	2	0	3	2
Phosphorus	ppm	ASTM D5185m		0	0	2
Zinc	ppm	ASTM D5185m		30	31	41
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	0	0	0
Sodium	ppm	ASTM D5185m		<1	5	10
Potassium	ppm	ASTM D5185m	>20	<1	0	<1
Water	%	ASTM D6304	>0.05	0.007	0.011	0.005
ppm Water	ppm	ASTM D6304	>500	76	112	59.7
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		879	4362	10568
Particles >6µm		ASTM D7647	>1300	228	543	<u> </u>
Particles >14µm		ASTM D7647	>80	12	23	A 227
Particles >21µm		ASTM D7647	>20	3	5	A 81
Particles >38µm		ASTM D7647	>4	0	0	1 0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>/17/13	17/15/11	19/16/12	1 /19/15
FLUID DEGRADA		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.4	0.35	0.334	0.33




OIL ANALYSIS REPORT



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	LIGHT	NONE	LIGHT
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	46	45.2	45.2	44.9
SAMPLE IMAGES	\$	method	limit/base	current	history1	history2
Color				•		

Bottom

Laboratory : WearCheck Sample No. : KC129334 Lab Number : 06178752 Unique Number : 11030078 Test Package : IND 2

Received: 14 May 2024Tested: 15 May 2024Diagnosed: 16 May 2024 - Angela Borella

PERRYMAN 213 VANDALE DR HOUSTON, PA US 15342 Contact: SERVICE MANAGER

T:

F:

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: PERHOU [WUSCAR] 06178752 (Generated: 05/16/2024 12:34:38) Rev: 1

Contact/Location: SERVICE MANAGER - PERHOU Page 2 of 2