

OIL ANALYSIS REPORT

SAMPLE INFORMATION meth

Sample Rating Trend

Machine Id

022-0143 Component Diesel Engine Fluid SCHAEFFER SUPREME 7000 (5 GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor. Please specify the component make and model with your next sample.

Wear

All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil.

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0903925	WC0750670	WC0457417
Sample Date		Client Info		14 May 2024	04 Apr 2023	18 Jan 2021
Machine Age	hrs	Client Info		11530	11203	11176
Oil Age	hrs	Client Info		11203	0	250
Oil Changed		Client Info		Changed	Not Changd	Changed
Sample Status				NORMAL	NORMAL	ABNORMAL
CONTAMINATION	d.	method	limit/base	current	history1	history2
	•					
Fuel Water		WC Method	>5	<1.0 NEG	<1.0 NEG	<1.0 NEG
		WC Method WC Method	>0.2	NEG	NEG	NEG
Glycol				NEG	NEG	
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>100	16	5	22
Chromium	ppm	ASTM D5185m	>20	<1	<1	<1
Nickel	ppm	ASTM D5185m	>4	0	0	<1
Titanium	ppm	ASTM D5185m		0	0	<1
Silver	ppm	ASTM D5185m	>3	<1	0	0
Aluminum	ppm	ASTM D5185m	>20	2	2	2
Lead	ppm	ASTM D5185m	>40	1	0	<1
Copper	ppm	ASTM D5185m	>330	<1	<1	1
Tin	ppm	ASTM D5185m	>15	0	0	<1
Antimony	ppm	ASTM D5185m				0
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		51	99	50
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m	50	73	70	80
Manganese	ppm	ASTM D5185m		<1	<1	<1
Magnesium	ppm	ASTM D5185m	1000	60	22	28
Calcium	ppm	ASTM D5185m	1400	2341	2204	2321
Phosphorus	ppm	ASTM D5185m	985	1060	1017	1065
Zinc	ppm	ASTM D5185m	1060	1312	1218	1242
Sulfur	ppm	ASTM D5185m	4000	6094	6214	4710
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	4	5	5
Sodium	ppm	ASTM D5185m		2	0	5
Potassium	ppm	ASTM D5185m	>20	<1	0	1
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.2	0.1	0.2
Nitration	Abs/cm	*ASTM D7624	>20	10.0	8.0	13.3
Sulfation	Abs/.1mm	*ASTM D7415	>30	20.5	15.8	26.9
FLUID DEGRADA		method	limit/base	current	history1	history2
Oxidation						
UNIUALIUN				16.2		
Base Number (RN)	Abs/.1mm	*ASTM D7414	>25	16.3 5.0	13.2 5.9	19.5
Base Number (BN) 8:24:16) Rev: 1	mg KOH/g	ASTM D7414	>25 10	5.0	5.9	A 3.9

Report Id: AECCHATN [WUSCAR] 06182620 (Generated: 05/20/2024 08:24:16) Rev: 1

Submitted By: TECH TECHNICIAN

Page 1 of 2

6.0 Number (4.0 Base 20

> 19 18

13

В

Jun17/20

Abnorma 12

Viscosity @ 100°C

02/61-

OIL ANALYSIS REPORT

scalar

scalar

scalar

scalar

*Visual

*Visual

*Visual

*Visual

scalar *Visual

scalar *Visual

NONE

NONE

NONE

NONE

NONE

NONE

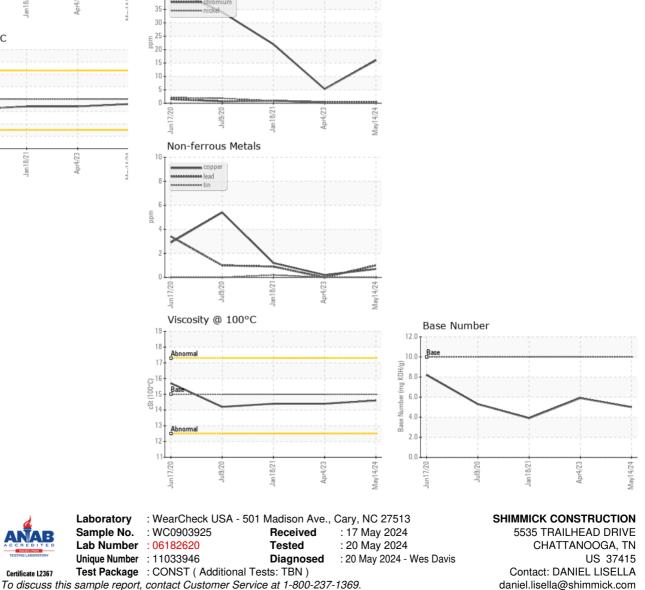
FT-IR (Direct Tre	nd)		
35 -	Oxidation Nitration Sulfation			
5 25 - Abnormal				*******
10-	TANABAR BARRARE	an and a state of the second	And and a state of the state of	
Jun17/20	Jul9/20	Jan18/21	Apr4/23	Mav14/24
	lumber			
12.0 = 10.0				
(B/HOX Bu 8.0				

Jan 18/21

Apr4/23 May14/24	14/24	Appearance	scalar	*Visual	NORML
	May	Odor	scalar	*Visual	NORML
		Emulsified Water	scalar	*Visual	>0.2
		Free Water	scalar	*Visual	
		FLUID PROPERT	IES	method	limit/bas
		Visc @ 100°C	cSt	ASTM D445	15
		GRAPHS			
Apr4/23 -	VCVV	Ferrous Alloys			

VISUAL

White Metal


Yellow Metal

Precipitate

Silt

Debris

Sand/Dirt

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NORML

NEG

NEG

14.6

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NORML

NEG

NEG

14.4

NONE

NONE

NONE

NONE

LIGHT

NONE

NORML

NORML

NEG

NEG

14.4

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Submitted By: TECH TECHNICIAN Page 2 of 2

T:

F: