

OIL ANALYSIS REPORT

.

Machine Id
8004
Component
Diesel Engine

DIESEL ENGINE OIL SAE 15W40 (--- QTS)

DIAGNOSIS

Recommendation

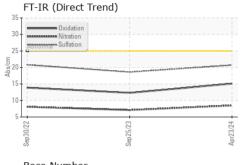
Resample at the next service interval to monitor. Please specify the component make and model with your next sample. Please specify the brand, type, and viscosity of the oil on your next sample.

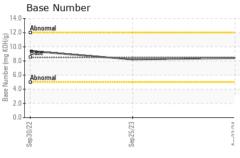
Wear

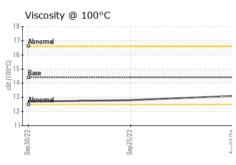
All component wear rates are normal.

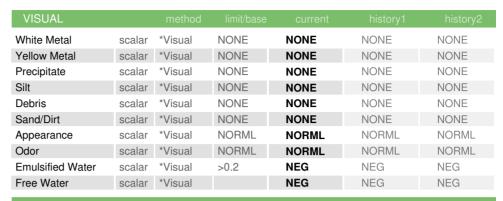
Contamination

There is no indication of any contamination in the

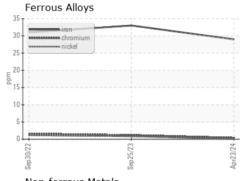

Fluid Condition

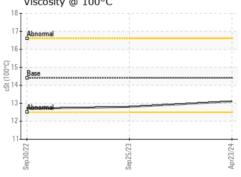

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

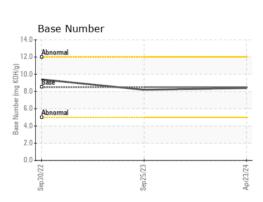

Soy2022 Soy2023 Apr2024						
CAMPLE INCORN	AATION		lii.t/la.a.a.a	aa.a.a.k	la i a ta mud	histom (O
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0904742	WC0828111	WC0723346
Sample Date		Client Info		23 Apr 2024	25 Sep 2023	30 Sep 2022
Machine Age	mls	Client Info		139176	134382	129282
Oil Age	mls	Client Info		0	0	0
Oil Changed		Client Info		Changed	Changed	Changed
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATION	١	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>100	29	33	31
Chromium	ppm	ASTM D5185m	>20	<1	1	2
Nickel	ppm	ASTM D5185m	>4	0	<1	1
Titanium	ppm	ASTM D5185m		66	10	<1
Silver	ppm	ASTM D5185m	>3	0	0	1
Aluminum	ppm	ASTM D5185m	>20	<1	2	1
Lead	ppm	ASTM D5185m	>40	0	<1	1
Copper	ppm	ASTM D5185m	>330	<1	1	2
Tin	ppm	ASTM D5185m	>15	<1	<1	<1
Vanadium	ppm	ASTM D5185m		<1	<1	<1
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	250	168	106	148
Barium	ppm	ASTM D5185m	10	0	0	0
Molybdenum	ppm	ASTM D5185m	100	13	15	34
Manganese	ppm	ASTM D5185m		<1	<1	<1
Magnesium	ppm	ASTM D5185m	450	557	642	676
Calcium	ppm	ASTM D5185m	3000	1741	1367	1398
Phosphorus	ppm	ASTM D5185m	1150	1088	995	1018
Zinc	ppm	ASTM D5185m	1350	1260	1183	1199
Sulfur	ppm	ASTM D5185m	4250	4549	3522	4318
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	6	5	7
Sodium	ppm	ASTM D5185m	>158	3	2	2
Potassium	ppm	ASTM D5185m	>20	0	4	2
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.7	0.5	0.6
Nitration	Abs/cm	*ASTM D7624	>20	8.5	7.1	8.1
Sulfation	Abs/.1mm	*ASTM D7415	>30	20.7	18.6	20.8
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	15.1	12.3	13.9
Base Number (BN)	mg KOH/g	ASTM D2896	8.5	8.4	8.2	9.4
. ,	- 3					



OIL ANALYSIS REPORT







FLUID PROPER	TIES	method				history2
Visc @ 100°C	cSt	ASTM D445	14.4	13.1	12.8	12.7

	10 -	Non-ferrous Metals		
	8-	copper copper		
Ε	6 -			
mdd	4			
	2 -			
	0		-	Ten in the latest ten in the l
		Sep30/22	Sep25/23	Apr23/24
		Viscosity @ 100°C		

Certificate 12367

Laboratory Sample No.

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : WC0904742 Lab Number : 06183747 Unique Number : 11035073 Test Package : FLEET

Received : 17 May 2024 **Tested** Diagnosed

: 21 May 2024 : 21 May 2024 - Wes Davis

CASWELL COUNTY SCHOOL BUS

353 COUNTY HOME ROAD YANCEYVILLE, NC US 27379

Contact: DEBRA MOORE

debra.moore@caswell.k12.nc.us T: (336)694-4116

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: CASYANNC [WUSCAR] 06183747 (Generated: 05/21/2024 16:42:00) Rev: 1

Contact/Location: DEBRA MOORE - CASYANNC