

OIL ANALYSIS REPORT

Sample Rating Trend

SSC Machine Id NIRO 4 (S/N 006) Component

Transmission (Manual)
Fluid

DTE 10/150 (15 GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

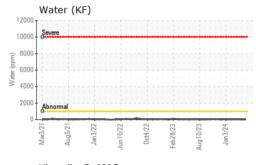
All component wear rates are normal.

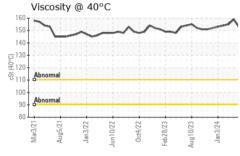
Contamination

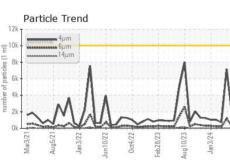
There is no indication of any contamination in the component. The amount and size of particulates present in the system is acceptable.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

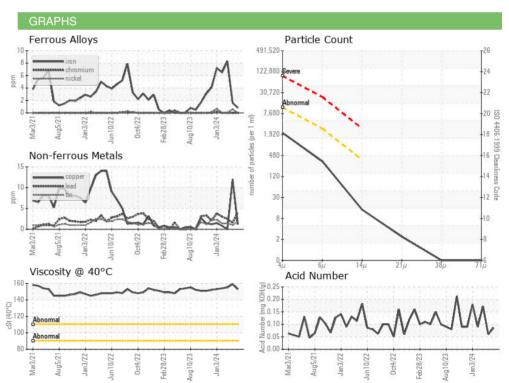

		972021 Aug20	21 Jan2022 Jun2022	Oct2022 Feb2023 Aug2023	Jan 2024	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0012829	USP0006780	USP0005835
Sample Date		Client Info		24 May 2024	08 Apr 2024	07 Mar 2024
Machine Age	hrs	Client Info		56084	0	54737
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>200	<1	2	8
Chromium	ppm	ASTM D5185m	>5	0	0	0
Nickel	ppm	ASTM D5185m	>5	0	<1	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>7	<1	0	0
Aluminum	ppm	ASTM D5185m	>25	<1	<1	0
Lead	ppm	ASTM D5185m	>45	4	2	2
Copper	ppm	ASTM D5185m	>225	1	12	0
Tin	ppm	ASTM D5185m	>10	2	1	1
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		<1	1	<1
Magnesium	ppm	ASTM D5185m		<1	3	0
Calcium	ppm	ASTM D5185m		91	76	46
Phosphorus	ppm	ASTM D5185m		155	477	132
Zinc	ppm	ASTM D5185m		<1	0	0
Sulfur	ppm	ASTM D5185m		1119	1888	1107
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>125	1	<1	<1
Sodium	ppm	ASTM D5185m		<1	2	<1
Potassium	ppm	ASTM D5185m	>20	1	2	0
Water	%	ASTM D6304	>0.1	0.002	0.002	0.005
ppm Water	ppm	ASTM D6304	>1000	24	18	51
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	1883	7172	711
Particles >6µm		ASTM D7647	>2500	290	1149	214
Particles >14μm		ASTM D7647	>320	12	33	20
Particles >21µm		ASTM D7647	>80	2	7	5
Particles >38μm		ASTM D7647	>20	0	0	0
Particles >71μm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	18/15/11	20/17/12	17/15/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.086	0.06	0.172




OIL ANALYSIS REPORT

12k = 10k	Girman Gu	m m um						
10k - 10k						1		1
E 2k	W	V	M	\sim		14	4	1
Mar3/2	5/2	Jan3/22	0/22	0ct4/22	-eb28/23	Aug10/23	Jan3/24	

VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	LIGHT	NONE	LIGHT
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


Visc @ 40°C	cSt	ASTM D445	153	159	155
-------------	-----	-----------	-----	-----	-----

SAM	PLE	IMAG	ES

Color

Certificate 12367

Laboratory

Sample No.

Test Package : IND 2

: USP0012829 Lab Number : 06193999 Unique Number : 11056122

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 29 May 2024

Tested Diagnosed

: 30 May 2024 : 31 May 2024 - Doug Bogart S. SIOUX CITY, NE

EMPIRICAL FOODS INC. - BPISOUPRO - EMPSOUPRO

US Contact:

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: