

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

116M 1 PRESSOR FEED

Hydraulic System
Fluid

USPI FG HYD 46 (--- LTR)

DIAGNOSIS

Recommendation

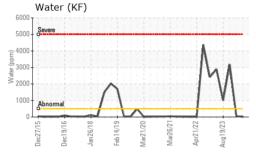
Resample at the next service interval to monitor.

Wear

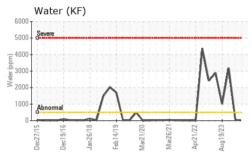
All component wear rates are normal.

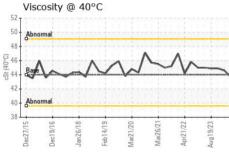
Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

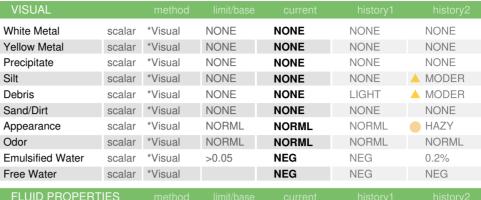

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


		c2015 Dec20	16 Jan2018 Feb2019	Mar2020 Mar2021 Apr2022	Aug2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USPM36465	USPM30230	USPM31496
Sample Date		Client Info		03 Jun 2024	27 Feb 2024	28 Nov 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	0	4	2
Chromium	ppm	ASTM D5185m	>20	0	0	<1
Nickel	ppm	ASTM D5185m	>20	<1	<1	<1
Titanium	ppm	ASTM D5185m		0	0	<1
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>20	0	<1	2
Lead	ppm	ASTM D5185m	>20	0	0	0
Copper	ppm	ASTM D5185m	>20	0	0	<1
Tin	ppm	ASTM D5185m	>20	0	0	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	<1
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	4
Molybdenum	ppm	ASTM D5185m		0	0	<1
Manganese	ppm	ASTM D5185m		<1	0	<1
Magnesium	ppm	ASTM D5185m		0	1	<1
Calcium	ppm	ASTM D5185m		0	2	2
Phosphorus	ppm	ASTM D5185m	725	495	505	441
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	625	590	550	570
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	2	7	6
Sodium	ppm	ASTM D5185m		1	2	0
Potassium	ppm	ASTM D5185m	>20	2	<1	2
Water	%	ASTM D6304	>0.05	0.001	0.005	△ 0.318
ppm Water	ppm	ASTM D6304	>500	13	51	▲ 3180
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	4089	3507	
Particles >6µm		ASTM D7647	>1300	655	814	
Particles >14μm		ASTM D7647	>160	42	52	
Particles >21µm		ASTM D7647	>40	13	11	
Particles >38μm		ASTM D7647	>10	1	0	
Particles >71µm		ASTM D7647	>3	0	0	
Oil Cleanliness		ISO 4406 (c)	>19/17/14	19/17/13	19/17/13	
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.36	0.37	0.25	0.12



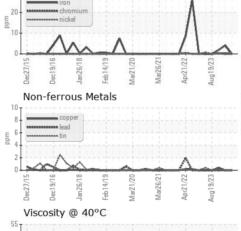
OIL ANALYSIS REPORT

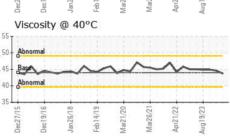


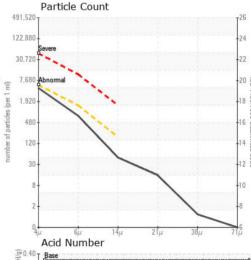
20k = 15k		m m um	1				
15k - Spouled to Jaguard to Jagua		Λ	Λ			A	1
		/ /	11			$\Lambda : \mathcal{F}$	
5k - Abn	omal		W	_	~		-11-

I LOID I HOI LI	TILO	memou			HISTOLAL	HISTOLYZ
Visc @ 40°C	cSt	ASTM D445	44	43.7	44.6	44.9

SAMPLE IMAGES


Bottom


Color



Laboratory Sample No. Lab Number

: USPM36465 : 06199236 Unique Number : 11061359

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 04 Jun 2024

Tested : 06 Jun 2024 Diagnosed : 09 Jun 2024 - Doug Bogart

TYSON - DAKOTA CITY RENDERING

DAKOTA CITY, NE US Contact:

Test Package : IND 2 Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: