

OKLAHOMA/1151/EG - LOADER 46.87L [OKLAHOMA^1151^EG - LOADER]

Hydraulic System

MOBIL MOBILTRANS AST 30 (--- GAL)

DIAGNOSIS

Recommendation

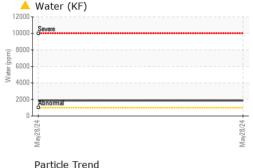
The filter change at the time of sampling has been noted. Resample at the next service interval to monitor.

Wear

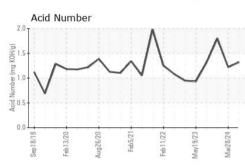
All component wear rates are normal.

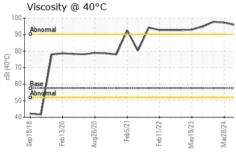
Contamination

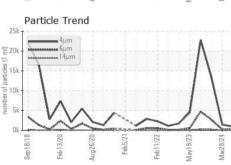
There is a light concentration of water present in the oil. The amount and size of particulates present in the system are acceptable.

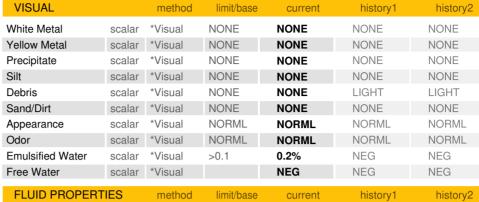

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

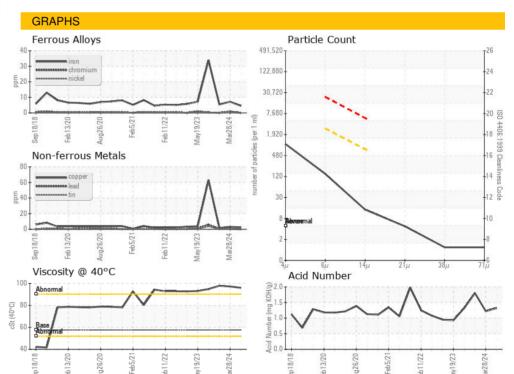

AST 30 (GAL)	AST 30 (GAL) #2010 Feb.020 Aug.020 Feb.021 Feb.022 May.023 May.023 May.024					
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0935126	WC0908781	WC0857431
Sample Date		Client Info		28 May 2024	28 Mar 2024	08 Feb 2024
Machine Age	hrs	Client Info		10533	10309	9979
Oil Age	hrs	Client Info		12974	0	1000
Oil Changed		Client Info		N/A	N/A	Changed
Sample Status				ABNORMAL	NORMAL	ATTENTION
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	4	7	5
Chromium	ppm	ASTM D5185m	>10	0	<1	0
Nickel	ppm	ASTM D5185m	>10	0	<1	0
Titanium	ppm	ASTM D5185m		<1	<1	<1
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>10	1	2	1
Lead	ppm	ASTM D5185m	>10	0	<1	<1
Copper	ppm	ASTM D5185m	>75	2	3	2
Tin	ppm	ASTM D5185m	>10	<1	<1	0
Vanadium	ppm	ASTM D5185m		0	<1	0
Cadmium	ppm	ASTM D5185m		0	<1	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		40	33	34
Barium	ppm	ASTM D5185m		<1	0	0
Molybdenum	ppm	ASTM D5185m		<1	2	<1
Manganese	ppm	ASTM D5185m		<1	<1	0
Magnesium	ppm	ASTM D5185m		16	16	13
Calcium	ppm	ASTM D5185m		2975	2800	2941
Phosphorus	ppm	ASTM D5185m		1086	850	1035
Zinc	ppm	ASTM D5185m		1222	1183	1214
Sulfur	ppm	ASTM D5185m		5255	4332	5048
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	6	7	6
Sodium	ppm	ASTM D5185m		2	2	3
Potassium	ppm	ASTM D5185m		<1	2	<1
Water	%	ASTM D6304	>0.1	<u> </u>		
ppm Water	ppm	ASTM D6304	>1000	<u> </u>		
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		902	1435	13494
Particles >6µm		ASTM D7647	>2500	126	229	2669
Particles >14μm		ASTM D7647	>640	12	20	225
Particles >21μm		ASTM D7647	>160	4	5	55
Particles >38μm		ASTM D7647	>40	1	0	2
Particles >71μm		ASTM D7647	>10	1	0	0
Oil Cleanliness		ISO 4406 (c)	>/18/16	17/14/11	18/15/11	21/19/15
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		1.32	1.22	1.80




OIL ANALYSIS REPORT



Part 25k T	icle Tre	end				
	4μm 6μm				٨	
8 15k	14 <i>j</i> .cm					
San 15k - 10k - 10						
Jagun 5k	1	_			1.	
0k	<u> </u>	\sim				1
Sep18/18	eb13/20	Aug26/20	Feb5/21	Feb11/22	May19/23	Mar28/24
Sep	歪	Aug	LL.	歪	Na Sa	Ma


I LOID I NOI LITTILO		memou	IIIIII/Dase	Current	HISTOLAL	Tilotoi ya	
Visc @ 40°C	cSt	ASTM D445	57.6	95.9	97.2	97.8	

SAMPLE IMAGES	method	limit/base	current	history1	history2

Color

Certificate 12367

Report Id: SHEWIC [WUSCAR] 06200061 (Generated: 06/07/2024 17:46:07) Rev: 1

Laboratory Sample No.

: WC0935126 Lab Number : 06200061

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 05 Jun 2024

Tested Diagnosed

: 07 Jun 2024 : 07 Jun 2024 - Jonathan Hester

SHERWOOD CONSTRUCTION CO INC 3219 WEST MAY ST WICHITA, KS US 67213

Unique Number : 11062184 Test Package : CONST (Additional Tests: KF) Contact: BILL ORCUTT To discuss this sample report, contact Customer Service at 1-800-237-1369. william.orcutt@wildcat.net st - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Submitted By: GARRETT ADAMS

T:

F: