

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

SOUTH ER: B-3 (S/N CFFCB B-3)

Refrigeration Compressor

USPI ALT-68 SC (220 GAL)

DIAGNOSIS

Recommendation

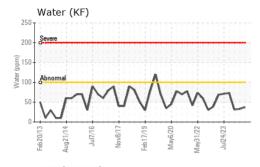
Resample at the next service interval to monitor.

Wear

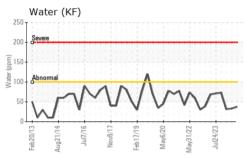
All component wear rates are normal.

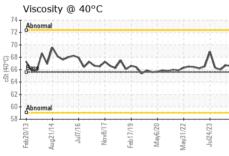
Contamination

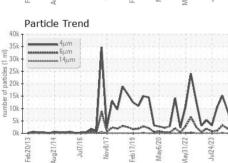
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

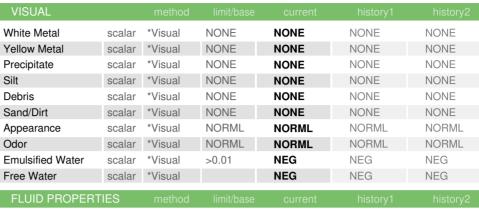

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

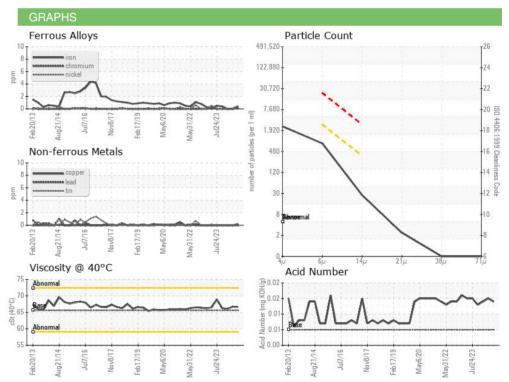

12013 Aug2014 Jul2016 Nov2017 Feb2019 Mey2020 Mey2022 Jul2023						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0012518	USP0005902	USP0004426
Sample Date		Client Info		29 May 2024	12 Mar 2024	18 Dec 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	ATTENTION
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	<1	0	0
Chromium	ppm	ASTM D5185m	>2	<1	0	0
Nickel	ppm	ASTM D5185m		0	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	0	0
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m	>8	<1	0	0
Tin	ppm	ASTM D5185m	>4	<1	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		<1	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m		<1	0	0
Calcium	ppm	ASTM D5185m		0	<1	1
Phosphorus	ppm	ASTM D5185m		<1	0	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	0	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	0	0
Sodium	ppm	ASTM D5185m		0	<1	0
Potassium	ppm	ASTM D5185m	>20	<1	0	0
Water	%	ASTM D6304	>0.01	0.003	0.003	0.003
ppm Water	ppm	ASTM D6304	>100	37	33	31
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		2214	9030	15208
Particles >6µm		ASTM D7647	>2500	723	1889	3176
Particles >14µm		ASTM D7647	>320	24	67	134
Particles >21µm		ASTM D7647	>80	2	9	20
Particles >38µm		ASTM D7647	>20	0	1	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>/18/15	18/17/12	20/18/13	21/19/14
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.015	0.014




OIL ANALYSIS REPORT



40k 35k	4j.	rend	1					
30k -				N	1	۸/.	^	\
2k 40 k k k k k k k k k k k k k k k k k k	Aug21/14	Jul7/16	Nov8/17	Feb17/19	May6/20	May31/22	Jul24/23	7


LLOID PHOPE	THES	method			riistory i	HISTORY
Visc @ 40°C	cSt	ASTM D445	65.6	66.6	66.7	66.0

SAMPLE IMAGES	

Color

Certificate 12367

Laboratory Sample No. Lab Number

Test Package : IND 2

: USP0012518 : 06201535 Unique Number : 11063658

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 06 Jun 2024

Tested : 07 Jun 2024 Diagnosed

: 11 Jun 2024 - Doug Bogart

CONAGRA-COUNCIL BLUFFS-USPI

1023 4TH STREET COUNCIL BLUFFS, IA US 51503

Contact: CRAIG BARR

To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T: (712)325-5200

F: (712)325-5246