

OIL ANALYSIS REPORT

Sample Rating Trend

CONNECTION BAY HBB HYDRAULIC

Hydraulic System

AW HYDRAULIC OIL ISO 46 (--- QTS)

DIAGNOSIS

Recommendation

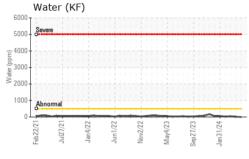
Little or no information is provided as to the component and lubricant being tested. Recommendations are therefore generic in nature and may not apply to the current application. Please forward information as to equipment type, reservoir capacity, lubricant type and any pertinent information to allow for a more accurate assessment. Resample at the next service interval to monitor. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample. Please specify the brand, type, and viscosity of the oil on your next sample.

Wear

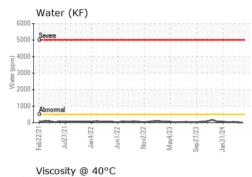
All component wear rates are normal.

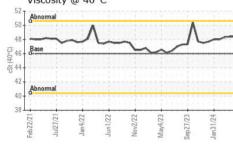
Contamination

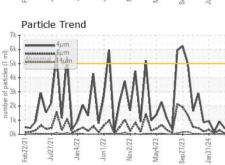
The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The water content is negligible. The system and fluid cleanliness is acceptable.

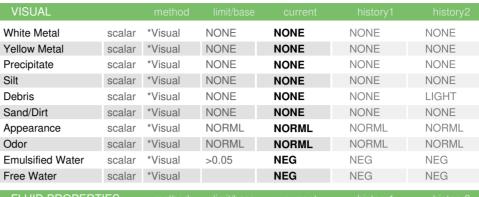

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

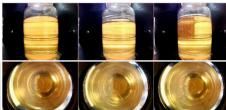

		62021 Jul20	21 Jan2022 Jun2022	Nov2022 May2023 Sep2023	Jan 2024	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		RP0044191	RP0042064	RP0042714
Sample Date		Client Info		06 Jun 2024	09 May 2024	28 Mar 2024
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	1	2	0
Chromium	ppm	ASTM D5185m	>20	<1	<1	0
Nickel	ppm	ASTM D5185m	>20	0	0	0
Titanium	ppm	ASTM D5185m		<1	<1	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>20	2	2	0
Lead	ppm	ASTM D5185m	>20	<1	0	0
Copper	ppm	ASTM D5185m	>20	3	5	3
Tin	ppm	ASTM D5185m	>20	<1	<1	0
Vanadium	ppm	ASTM D5185m		0	<1	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	5	0	0	0
Barium	ppm	ASTM D5185m	5	0	0	0
Molybdenum	ppm	ASTM D5185m	5	<1	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m	25	2	2	0
Calcium	ppm	ASTM D5185m	200	45	73	48
Phosphorus	ppm	ASTM D5185m	300	340	502	330
Zinc	ppm	ASTM D5185m	370	438	607	402
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	2	8	<1
Sodium	ppm	ASTM D5185m		0	0	<1
Potassium	ppm	ASTM D5185m	>20	1	1	0
Water	%	ASTM D6304	>0.05	0.00	0.002	0.004
ppm Water	ppm	ASTM D6304	>500	0	18	40
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	318	421	895
Particles >6µm		ASTM D7647	>1300	107	65	300
Particles >14µm		ASTM D7647	>160	14	5	34
Particles >21µm		ASTM D7647	>40	3	1	10
Particles >38µm		ASTM D7647	>10	0	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>19/17/14	15/14/11	16/13/10	17/15/12
FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.57	0.23	0.28	0.24

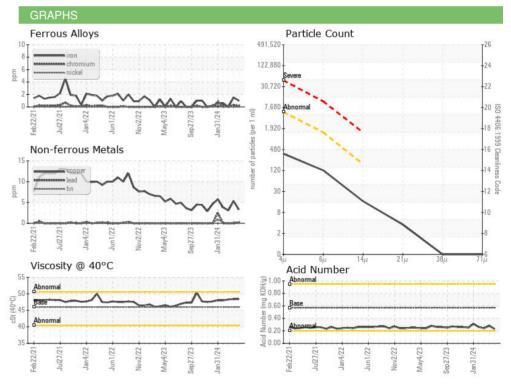



OIL ANALYSIS REPORT



Par 7k T	ticle T	rend						
CI.	4 µ	m m				1		
5k - Abno	2000al. 11 4/	lm	. 1			11		
thed 3k	. /		M	M				
Sappited of a specific specifi	V	N	V	/ ۷ /	IN	N	1	
Ok L	<u> </u>	<u>V_</u>	M	Δ	12	1	7	7
Feb22/21	Jul27/21	Jan4/22	Jun1/22	Nov2/22	May4/23	Sep27/23	Jan31/24	
Œ.	-			_	2	S	3	





FLUID PROPER	THES	metnoa	ilmit/base	current	nistory i	nistory2
Visc @ 40°C	cSt	ASTM D445	46	48.4	48.38	48.3

SAMPLE IMAGES	method		

Color **Bottom**

Laboratory Sample No.

: RP0044191 Lab Number : 06203381 Unique Number : 11070842 Test Package : IND 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513

Received : 07 Jun 2024 **Tested** : 10 Jun 2024 Diagnosed

: 10 Jun 2024 - Wes Davis

Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

OUTOKUMPU STAINLESS USA

HWY 43 N CALVERT, AL

US 36513 Contact: MARIO JOHNSON Mario.johnson@outokumpu.com T: (251)321-4105

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

F: x: