

OIL ANALYSIS REPORT

Sample Rating Trend

ISO

112713 - HP1 (S/N 5680X149)

Compressor Fluid CIMARRON HB-150 (--- GAL)

DIAGNOSIS

Machine Id

Recommendation

We recommend you service the filters on this component if applicable. Resample at the next service interval to monitor. Please note that this is a corrected copy.

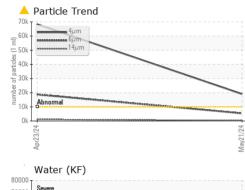
Wear

All component wear rates are normal.

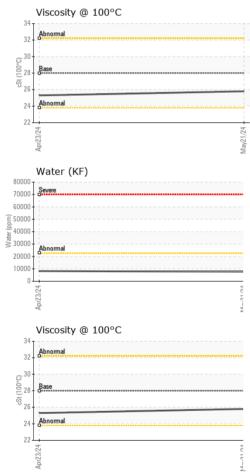
Contamination

There is a high amount of silt (particulates < 14 microns in size) present in the oil.

Fluid Condition


The AN level is acceptable for this fluid. The condition of the oil is acceptable for the time in service.

Instruction ppm ASTM D5185m >10 0 <1	history2	h	history1	current	limit/base	method	IATION	SAMPLE INFORM
Machine Age hrs Client Info 0 Oil Age hrs Client Info 0 0 Sample Status Client Info N/A N/A N/A WEAR METALS method Imil/base current history1 WEAR METALS method Imil/base current history1 Chromium ppm ASTM D5185m >10 0 0 Chromium ppm ASTM D5185m >50 3 1 Tatanium ppm ASTM D5185m >50 <1			TO90004046	TO90004131		Client Info		Sample Number
Oil Age Ins Client Info 0 Oil Changed Client Info N/A N/A N/A Sample Status Imit Info N/A N/A N/A WEAR METALS method limit/base current history1 WEAR METALS method limit/base current history1 Wickel ppm ASTM D5185m >50 3 1 Nickel ppm ASTM D5185m >10 0 0 Silver ppm ASTM D5185m >25 <1			23 Apr 2024	21 May 2024		Client Info		Sample Date
Oil Changed Client Info N/A N/A N/A ABNORMAL ABNORMAL ABNORMAL Sample Status method limit/base current history1 WEAR METALS method limit/base current history1 WEAR METALS method limit/base current history1 Iron ppm ASTM D5185m >10 0 0 0 0 Nickel ppm ASTM D5185m 0 0 0 0 0 0 Aluminum ppm ASTM D5185m >25 <1 1 Copper ppm ASTM D5185m >25 <1 2 1 Cadmium ppm ASTM D5185m >25 <1 0 0 0 ADDITIVES method limit/base current history1 Boron ppm ASTM D5185m 0 0 0 0 <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td>Client Info</td> <td>hrs</td> <td>Machine Age</td>			0	0		Client Info	hrs	Machine Age
Oil Changed Client Info N/A N/A N/A Sample Status method limit/base current history1 WEAR METALS method limit/base current history1 WEAR METALS method limit/base current history1 WEAR METALS method limit/base current history1 Nickel ppm ASTM D5185m >10 0 <1 0 Silver ppm ASTM D5185m >25 <1 <1 0 Aluminum ppm ASTM D5185m >550 <1 <1 0 Cadmium ppm ASTM D5185m >550 <1 <1 0 Adamium ppm ASTM D5185m >15 2 1 0 0 Adamium ppm ASTM D5185m 0 0 0 0 0 Adamium ppm ASTM D5185m 0			0	0		Client Info	hrs	Oil Age
WEAR METALS method limit/base current history1 Iron ppm ASTM D5185m >50 3 1 - Chromium ppm ASTM D5185m 0 <1			N/A	N/A		Client Info		-
Iron ppm ASTM D5185m >50 3 1 Chromium ppm ASTM D5185m >10 0 0 - Nickel ppm ASTM D5185m 0 <11			ABNORMAL	ABNORMAL				Sample Status
Chromium ppm ASTM D5185m >10 0 0 - Nickel ppm ASTM D5185m 0 <1 - Titanium ppm ASTM D5185m 0 0 - Silver ppm ASTM D5185m >25 <1 1 - Lead ppm ASTM D5185m >25 <1 <1 - Copper ppm ASTM D5185m >50 <1 2 - Tin ppm ASTM D5185m >15 2 1 - Copper ppm ASTM D5185m 0 0 0 - Adamium ppm ASTM D5185m 0 0 0 - Addenum ppm ASTM D5185m 0 0 0 - Boron ppm ASTM D5185m 0 0 0 - - Magnesium ppm ASTM D5185m 0 0 0 - -	history2	h	history1	current	limit/base	method		WEAR METALS
Nickel ppm ASTM D5185m 0 <1 - Titanium ppm ASTM D5185m 0 0 - Silver ppm ASTM D5185m >25 <1			1	3	>50	ASTM D5185m	ppm	Iron
Nickel ppm ASTM D5185m 0 <1 Titanium ppm ASTM D5185m 21 0 Silver ppm ASTM D5185m >25 <1			0	0	>10	ASTM D5185m	ppm	Chromium
Titanium ppm ASTM D5185m 0 0 - Silver ppm ASTM D5185m >25 <1			<1	0		ASTM D5185m		Nickel
Silver ppm ASTM D5185m >25 <1 1 Aluminum ppm ASTM D5185m >25 <1			0	<1		ASTM D5185m		Titanium
Aluminum ppm ASTM D5185m >25 <1				0				
Lead ppm ASTM D5185m >25 <1 <1 <1 Copper ppm ASTM D5185m >50 <1				-	>25			
Copper ppm ASTM D5185m >50 <1 2 - Tin ppm ASTM D5185m >15 2 1 - Vanadium ppm ASTM D5185m 0 0 - Cadmium ppm ASTM D5185m 0 0 0 - ADDITIVES method limit/base current history1 - Boron ppm ASTM D5185m 0 0 0 - Magnaese ppm ASTM D5185m 0 0 - - Magnesium ppm ASTM D5185m 0 0 0 - - Magnesium ppm ASTM D5185m 0 0 0 - - Colacium ppm ASTM D5185m 0 0 0 - - Sulfur ppm ASTM D5185m 0 0 0 - - Sulfur ppm ASTM D5185m >25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Tin ppm ASTM D5185m >15 2 1 - Vanadium ppm ASTM D5185m 0 0 0 - Cadmium ppm ASTM D5185m 0 0 0 - Boron ppm ASTM D5185m 0 0 0 0 - Boron ppm ASTM D5185m 0 0 0 0 - - Barium ppm ASTM D5185m 0 0 0 - - - Magnesee ppm ASTM D5185m 0 0 0 0 0 - Magnesium ppm ASTM D5185m 0 0 0 0 0 0 - Calcium ppm ASTM D5185m 0 0 0 0 - - Silicon ppm ASTM D5185m 0 39 420 - Silicon ppm ASTM D5185m >25 1 2 - Sodium ppm ASTM D5185m >20 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Name ppm ASTM D5185m <1 0 Cadmium ppm ASTM D5185m 0 0 0 ADDITIVES method limit/base current history1 Boron ppm ASTM D5185m 0 0 0 Barium ppm ASTM D5185m 0 0 0 Manganese ppm ASTM D5185m 0 0 0 Magnesium ppm ASTM D5185m 0 0 0 0 Magnesium ppm ASTM D5185m 0 0 0 0 Magnesium ppm ASTM D5185m 0 0 0 Slifor ppm ASTM D5185m 0 39 420 Slifor ppm ASTM D5185m 0 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Cadmium ppm ASTM D5185m 0 0 - ADDITIVES method limit/base current history1 Boron ppm ASTM D5185m 0 0 0 0 Barium ppm ASTM D5185m 0 0 0 0 0 Barium ppm ASTM D5185m 0 0 0 0 0 0 Manganese ppm ASTM D5185m 0 0 0 0 0 0 0 Calcium ppm ASTM D5185m 0 0 0 0 0 0 0 Calcium ppm ASTM D5185m 0 5 0 - - Sulfur ppm ASTM D5185m 0 0 0 0 0 - Sulfur ppm ASTM D5185m 225 1 2 - Sodium ppm ASTM D5185m 20 3 4 - <td></td> <td></td> <td></td> <td></td> <td>210</td> <td></td> <td></td> <td></td>					210			
ADDITIVES method limit/base current history1 Boron ppm ASTM D5185m 0 0 0 - Barium ppm ASTM D5185m 0 0 0 - Manganese ppm ASTM D5185m 0 0 0 - Magnesium ppm ASTM D5185m 0 0 0 - Magnesium ppm ASTM D5185m 0 0 0 - Calcium ppm ASTM D5185m 0 0 0 - - Astm D5185m 0 5 0 - - - - Zinc ppm ASTM D5185m 0 39 420 - - Sulfur ppm ASTM D5185m 0 39 420 - Sodium ppm ASTM D5185m 0 0 0 - Solium ppm ASTM D5185m 20 3 4								
Boron ppm ASTM D5185m 0			U	U		A91M D9189M	ppm	
Barium ppm ASTM D5185m 0 0 0 . Manganese ppm ASTM D5185m 0 0 .	history2	h	history1	current	limit/base	method		ADDITIVES
Molybdenum ppm ASTM D5185m 0 0 <1 - Manganese ppm ASTM D5185m 0 0 0 0 - Magnesium ppm ASTM D5185m 0 0 0 0 - Calcium ppm ASTM D5185m 0 0 0 0 - Phosphorus ppm ASTM D5185m 0 5 0 - Zinc ppm ASTM D5185m 0 39 420 - Sulfur ppm ASTM D5185m 0 39 420 - CONTAMINANTS method limit/base current history1 - Silicon ppm ASTM D5185m >20 3 4 - Sodium ppm ASTM D5185m >20 3 4 - Potassium ppm ASTM D5185m >20 3 4 - Potassium ppm ASTM D5185m <			0	0	0	ASTM D5185m	ppm	Boron
Manganese ppm ASTM D5185m <1 <1 <1 <1 Magnesium ppm ASTM D5185m 0 0 0 0 0 0 Calcium ppm ASTM D5185m 0 0 0 0 0 0 0 Phosphorus ppm ASTM D5185m 0 5 0 - - Zinc ppm ASTM D5185m 0 39 420 - Sulfur ppm ASTM D5185m 0 39 420 - CONTAMINANTS method limit/base current history1 Silicon ppm ASTM D5185m >25 1 2 - Sodium ppm ASTM D5185m >20 3 4 - Sodium ppm ASTM D5185m >20 3 4 - Water % ASTM D6304 >2.2.26 0.757 0.822 - Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm			0	0	0	ASTM D5185m	ppm	Barium
Magnesium ppm ASTM D5185m 0 0 0 0 Calcium ppm ASTM D5185m 0 5 0 - Phosphorus ppm ASTM D5185m 0 5 0 - Zinc ppm ASTM D5185m 0 0 0 0 - Sulfur ppm ASTM D5185m 0 39 420 - CONTAMINANTS method limit/base current history1 - Silicon ppm ASTM D5185m >25 1 2 - Sodium ppm ASTM D5185m >20 3 4 - Potassium ppm ASTM D6304 >2.26 0.757 0.822 - ppm Water % ASTM D6304 >2.2600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 - Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >14µm ASTM D7647 >200 5410 </td <td></td> <td></td> <td><1</td> <td>0</td> <td>0</td> <td>ASTM D5185m</td> <td>ppm</td> <td>Molybdenum</td>			<1	0	0	ASTM D5185m	ppm	Molybdenum
Calcium ppm ASTM D5185m 0			<1	<1		ASTM D5185m	ppm	Manganese
Phosphorus ppm ASTM D5185m 0 5 0 - Zinc ppm ASTM D5185m 0 0 0 0 0 - Sulfur ppm ASTM D5185m 0 39 420 - CONTAMINANTS method limit/base current history1 Silicon ppm ASTM D5185m >25 1 2 - Sodium ppm ASTM D5185m >25 1 2 - Sodium ppm ASTM D5185m >20 3 4 - Potassium ppm ASTM D5185m >20 3 4 - Water % ASTM D6304 >2.260 7570 8.220 - FLUID CLEANLINESS method limit/base current history1 Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm ASTM D7647 >320 242 1144 - Particles >1µm ASTM D7647 >80 33 289 - <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>ASTM D5185m</td> <td>ppm</td> <td>Magnesium</td>			0	0	0	ASTM D5185m	ppm	Magnesium
Zinc ppm ASTM D5185m 0 0 0 0 0 0 0 0 0 0 0 0 0 39 420 - Sulfur ppm ASTM D5185m 0 39 420 - CONTAMINANTS method limit/base current history1 Silicon ppm ASTM D5185m >25 1 2 - Sodium ppm ASTM D5185m >20 3 4 - Potassium ppm ASTM D6304 >2.26 0.757 0.822 - ppm Water ppm ASTM D6304 >2.2600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 - Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm ASTM D7647 >2500 5410 18738 - Particles >1µm ASTM D7647 >320 <td< td=""><td></td><td></td><td>0</td><td>0</td><td>0</td><td>ASTM D5185m</td><td>ppm</td><td>Calcium</td></td<>			0	0	0	ASTM D5185m	ppm	Calcium
Sulfur ppm ASTM D5185m 0 39 420 - CONTAMINANTS method limit/base current history1 Silicon ppm ASTM D5185m >25 1 2 - Sodium ppm ASTM D5185m >20 3 4 - Sodium ppm ASTM D5185m >20 3 4 - Potassium ppm ASTM D6304 >2.2.6 0.757 0.822 - ppm Water ppm ASTM D6304 >2.2600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm ASTM D7647 >2500 5410 18738 - Particles >14µm ASTM D7647 >320 242 1144 - Particles >38µm ASTM D7647 >20 1 13 - Par			0	5	0	ASTM D5185m	ppm	Phosphorus
Sulfur ppm ASTM D5185m 0 39 420 - CONTAMINANTS method limit/base current history1 Silicon ppm ASTM D5185m >25 1 2 - Sodium ppm ASTM D5185m >20 3 4 - Potassium ppm ASTM D5185m >20 3 4 - Water % ASTM D6304 >2.26 0.757 0.822 - ppm Water ppm ASTM D6304 >2.2600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 - Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm ASTM D7647 >2500 5410 18738 - Particles >14µm ASTM D7647 >320 242 1144 - Particles >21µm ASTM D7647 >20 1 13 -			0	0	0	ASTM D5185m	ppm	
Silicon ppm ASTM D5185m >25 1 2 Sodium ppm ASTM D5185m 0 0 - Potassium ppm ASTM D5185m >20 3 4 - Potassium ppm ASTM D5185m >20 3 4 - Water % ASTM D6304 >2.26 0.757 0.822 - ppm Water ppm ASTM D6304 >22600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm ASTM D7647 >2500 5410 18738 - Particles >14µm ASTM D7647 >320 242 1144 - Particles >21µm ASTM D7647 >20 1 13 - Particles >38µm ASTM D7647 >20 1 13 - Oil Cleanliness ISO 4406 (c) >20/18/15 21/20/15 23/21/17			420	39	0	ASTM D5185m		Sulfur
Sodium ppm ASTM D5185m 0 0 - Potassium ppm ASTM D5185m >20 3 4 - Water % ASTM D6304 >2.26 0.757 0.822 - ppm Water ppm ASTM D6304 >22600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm ASTM D7647 >2500 5410 18738 - Particles >6µm ASTM D7647 >320 242 1144 - Particles >21µm ASTM D7647 >80 33 289 - Particles >38µm ASTM D7647 >20 1 13 - Particles >71µm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 21/20/15 23/21/17 -	history2	h	history1	current	limit/base	method		CONTAMINANTS
Potassium ppm ASTM D5185m >20 3 4 - Water % ASTM D6304 >2.26 0.757 0.822 - ppm Water ppm ASTM D6304 >22600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm ASTM D7647 >2500 ▲ 5410 18738 - Particles >6µm ASTM D7647 >320 242 1144 - Particles >14µm ASTM D7647 >80 33 289 - Particles >21µm ASTM D7647 >20 1 13 - Particles >71µm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 21/20/15 23/21/17 -			2	1	>25	ASTM D5185m	ppm	Silicon
Water % ASTM D6304 >2.26 0.757 0.822 - ppm Water ppm ASTM D6304 >22600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 Particles >4µm ASTM D7647 >10000 19061 68341 - Particles >6µm ASTM D7647 >2500 5410 18738 - Particles >6µm ASTM D7647 >320 242 1144 - Particles >14µm ASTM D7647 >80 33 289 - Particles >38µm ASTM D7647 >20 1 13 - Particles >71µm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 21/20/15 23/21/17 -			0	0		ASTM D5185m	ppm	Sodium
Water % ASTM D6304 >2.26 0.757 0.822 - ppm Water ppm ASTM D6304 >22600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 Particles >4µm ASTM D7647 >10000 19061 ▲ 68341 - Particles >6µm ASTM D7647 >2500 ▲ 5410 ▲ 18738 - Particles >6µm ASTM D7647 >320 242 ▲ 1144 - Particles >21µm ASTM D7647 >80 33 ▲ 289 - Particles >38µm ASTM D7647 >20 1 13 - Particles >71µm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -			4	3	>20	ASTM D5185m	ppm	Potassium
ppm ASTM D6304 >22600 7570 8220 - FLUID CLEANLINESS method limit/base current history1 Particles >4µm ASTM D7647 >10000 19061 ▲ 68341 - Particles >6µm ASTM D7647 >2500 ▲ 5410 ▲ 18738 - Particles >6µm ASTM D7647 >320 242 ▲ 1144 - Particles >14µm ASTM D7647 >80 33 ▲ 289 - Particles >21µm ASTM D7647 >20 1 13 - Particles >38µm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -			0.822	0.757	>2.26	ASTM D6304		Water
Particles >4μm ASTM D7647 >10000 19061 ▲ 68341 - Particles >6μm ASTM D7647 >2500 ▲ 5410 ▲ 18738 - Particles >14μm ASTM D7647 >320 242 ▲ 1144 - Particles >21μm ASTM D7647 >80 33 ▲ 289 - Particles >38μm ASTM D7647 >20 1 13 - Particles >71μm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -			8220	7570	>22600	ASTM D6304	ppm	ppm Water
Particles >6μm ASTM D7647 >2500 ▲ 5410 ▲ 18738 - Particles >14μm ASTM D7647 >320 242 ▲ 1144 - Particles >21μm ASTM D7647 >80 33 ▲ 289 - Particles >38μm ASTM D7647 >20 1 13 - Particles >71μm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -	history2	h	history1	current	limit/base	method	ESS	FLUID CLEANLIN
Particles >14µm ASTM D7647 >320 242 ▲ 1144 - Particles >21µm ASTM D7647 >80 33 ▲ 289 - Particles >38µm ASTM D7647 >20 1 13 - Particles >71µm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -			▲ 68341	9061	>10000	ASTM D7647		Particles >4µm
Particles >21μm ASTM D7647 >80 33 ▲ 289 - Particles >38μm ASTM D7647 >20 1 13 - Particles >71μm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -			1 8738	<u> </u>	>2500	ASTM D7647		Particles >6µm
Particles >38μm ASTM D7647 >20 1 13 - Particles >71μm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -			1 144	242	>320	ASTM D7647		Particles >14µm
Particles >38μm ASTM D7647 >20 1 13 - Particles >71μm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -			<u> </u>	33	>80	ASTM D7647		Particles >21µm
Particles >71μm ASTM D7647 >4 0 0 - Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17 -			13	1				
Oil Cleanliness ISO 4406 (c) >20/18/15 ▲ 21/20/15 ▲ 23/21/17								
FLUID DEGRADATION method limit/base current history1	history2	h	history1	current	limit/base	method	TION	FLUID DEGRADA


Contact/Location: CARLOS LEAL - CIMCAR Page 1 of 2

OIL ANALYSIS REPORT

Ę

		White Metal	scalar	*Visual	NONE	NONE	NONE	
		Yellow Metal	scalar	*Visual	NONE	NONE	NONE	
		Precipitate	scalar	*Visual	NONE	NONE	NONE	
		Silt	scalar	*Visual	NONE	NONE	NONE	
		Debris	scalar	*Visual	NONE	LIGHT	LIGHT	
		Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	
		Appearance	scalar	*Visual	NORML	NORML	NORML	
		Odor	scalar	*Visual	NORML	NORML	NORML	
		Emulsified Water	scalar	*Visual	>2.26	NEG	NEG	
		Free Water	scalar	*Visual		NEG	NEG	
		FLUID PROPERT	IES	method	limit/base	current	history1	history2
				ASTM D445		149	138	
		Visc @ 40°C	cSt		151	-		
		Visc @ 100°C	cSt	ASTM D445	28	25.8	25.3	
		Viscosity Index (VI)	Scale	ASTM D2270	224	209	218	
		SAMPLE IMAGES	S	method	limit/base	current	history1	history2
		Color						no image
					1			
		Bottom						no image
		GRAPHS Ferrous Alloys				Particle Coun	t	no image
		GRAPHS			491,520	Particle Coun	t	no image
		GRAPHS Ferrous Alloys					t	
	bpm	GRAPHS Ferrous Alloys			491,520		t	1
		GRAPHS Ferrous Alloys			491,520 122,880 30,720		t	
		GRAPHS Ferrous Alloys			491,520 122,880 30,720		t	
		GRAPHS Ferrous Alloys			491,520 122,880 30,720		t	
		GRAPHS Ferrous Alloys	s		491,520 122,880 30,720		t	
	bpm	GRAPHS Ferrous Alloys	5		491,520 122,880 30,720		t	
	шdd	GRAPHS Ferrous Alloys	5		491,520 122,880 30,720 121,000 122,000 120,0000 120,0000 120,0000 120,0000 120,0000000000		t	
	шdd	GRAPHS Ferrous Alloys	s		491.520 122,880 30,720 +7,680 +7,690 +7,680 +7,680 +7,680 +7,680 +7,680 +7,680 +7,680 +7,680 +7,680 +7,680 +7,690 +7,600		t	1
	mqq	GRAPHS Ferrous Alloys	5		491,520 122,880 30,720 121,000 122,000 120,0000 120,0000 120,0000 120,0000 120,0000000000		t	
	шdd	GRAPHS Ferrous Alloys	s		491,520 122,880 30,720 121,000 122,000 122,000 122,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 122,000 120,0000 120,0000 120,0000 120,0000 120,0000 120,0000000000		t	
	шdd	GRAPHS Ferrous Alloys	5		491,520 122,880 30,720 121,000 122,000 122,000 122,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 122,000 120,0000 120,0000 120,0000 120,0000 120,0000 120,0000000000		t	
	mqq	CRAPHS Ferrous Alloys	S		491,520 122,880 30,720 121,000 122,000 122,000 122,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 122,000 120,0000 120,0000 120,0000 120,0000 120,0000 120,0000000000	Severe Abramal	14μ 21μ	
	mqqmqq	GRAPHS Ferrous Alloys	s		491,520 122,880 30,720 F21(7,680 F21(7)/eW F21	Severe	14μ 21μ	
	udd 17	GRAPHS Ferrous Alloys	S		491,520 122,880 30,720 F21(7,680 F21(7)/eW F21	Severe Abramal	14μ 21μ	
	wdd 11	GRAPHS Ferrous Alloys	S		491,520 122,880 30,720 F21(7,680 F21(7)/eW F21	Severe Abramal	14μ 21μ	
	cSt (40°C) ppm ppm ppm	GRAPHS Ferrous Alloys	S		491,520 122,880 30,720 F21(7,680 F21(7)/eW F21	Severe Abramal	14μ 21μ	
	cSt (40°C) ppm ppm	GRAPHS Ferrous Alloys	S		491,520 122,880 30,720 F21(7,680 F21(7)/eW F21	Severe Abramal	14μ 21μ	
	CS1 (40°C) ppm ppm	GRAPHS Ferrous Alloys	S		491,520 122,880 30,720 121,000 122,000 122,000 122,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 122,000 120,0000 120,0000 120,0000 120,0000 120,0000 120,0000000000	Severe Abramal	14μ 21μ	
+ + 7/1 7/P/0/1	St (40°C) ppm ppm	GRAPHS Ferrous Alloys	S		491,520 122,880 30,720 F21,7680 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,776 F21,7777 F21,7777 F21,7777 F21,7777 F21,7777 F21,77777 F21,77777 F21,777777777777777777777777777777777777	Severe Abramal	14μ 21μ	

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Certificate L2367

Contact/Location: CARLOS LEAL - CIMCAR

T:

F: