

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

BUSCH VM8 / VP-2 Component

USPI VAC 100 (--- GAL)

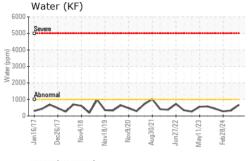
Recommendation

Resample at the next service interval to monitor.

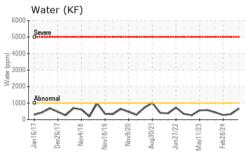
All component wear rates are normal.

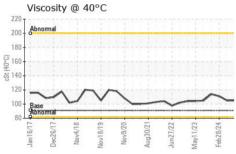
Contamination

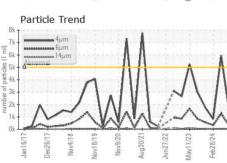
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

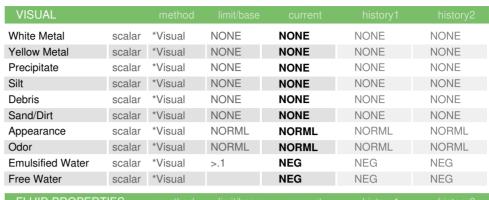

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

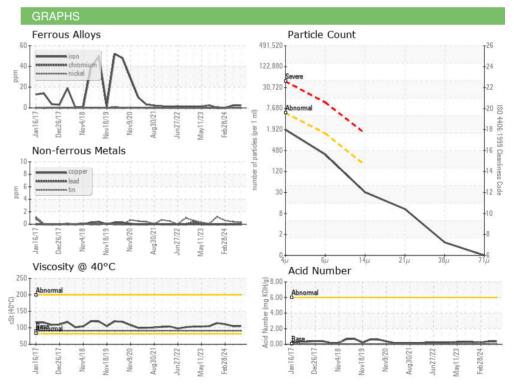

m2017 Duz2017 Nov2018 Nov2018 Nov2019 Nov2020 Aug2021 Jun2022 Mny2023 Feb2024						
SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USPM37627	USP0006792	USPM30251
Sample Date		Client Info		09 Jun 2024	15 Apr 2024	28 Feb 2024
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	ATTENTION	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>90	2	2	0
Chromium	ppm	ASTM D5185m	>5	0	<1	0
Nickel	ppm	ASTM D5185m	>5	0	0	0
Titanium	ppm	ASTM D5185m	>3	0	0	0
Silver	ppm	ASTM D5185m	>3	0	0	0
Aluminum	ppm	ASTM D5185m	>7	<1	<1	1
Lead	ppm	ASTM D5185m	>12	0	0	0
Copper	ppm	ASTM D5185m	>30	0	0	0
Tin	ppm	ASTM D5185m	>9	<1	<1	<1
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	<1	0
Barium	ppm	ASTM D5185m	0	0	<1	<1
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m		0	<1	0
Magnesium	ppm	ASTM D5185m	0	0	<1	0
Calcium	ppm	ASTM D5185m	0	0	4	2
Phosphorus	ppm	ASTM D5185m	1800	1629	1913	822
Zinc	ppm	ASTM D5185m	0	0	0	0
Sulfur	ppm	ASTM D5185m	0	0	0	19
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>60	<1	<1	2
Sodium	ppm	ASTM D5185m		<1	<1	1
Potassium	ppm	ASTM D5185m	>20	<1	2	0
Water	%	ASTM D6304	>.1	0.067	0.033	0.027
ppm Water	ppm	ASTM D6304	>1000	674	331	279
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	1659	5938	827
Particles >6µm		ASTM D7647	>1300	325	1266	326
Particles >14µm		ASTM D7647	>160	27	49	30
Particles >21µm		ASTM D7647	>40	9	9	7
Particles >38µm		ASTM D7647	>10	1	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>19/17/14	18/16/12	20/17/13	17/16/12
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.05	0.37	0.36	0.20




OIL ANALYSIS REPORT



7k -		μm μm		1	1			
6k - Abril 6	normal	4μm		-1	1		٨	- 1
3 4k			1		W			
2k - 1k	1	~/	1	N_{\wedge}	V.		A	V
1k -	<u> </u>	A STATE OF THE STA	Nov18/19	Nov9/20	Aug30/21	Jun27/22	<u></u>	Feb28/24
0k	-	Nov4/18						0.1


FLUID PROPER	HES	method			history1	history2
Visc @ 40°C	cSt	ASTM D445	91	105	105	111

SAMPLE IMAGES	method		history2

Color

Laboratory Sample No. Lab Number

: USPM37627 : 06205510 Unique Number : 11072971

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 10 Jun 2024 **Tested** : 12 Jun 2024

Diagnosed : 12 Jun 2024 - Doug Bogart

Test Package : IND 2 Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

F: (605)235-2960

DAKOTA CITY, NE

P.O. BOX 515

US 68731

TYSON-DAKOTA CITY-PRO

Contact: Service Manager