

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

BUCK_U2220 BUCK_U2220_M2220

Non-Drive End Bearing

ROYAL PURPLE SYNFILM GT 46 (--- GAL)

DIAGNOSIS

Recommendation

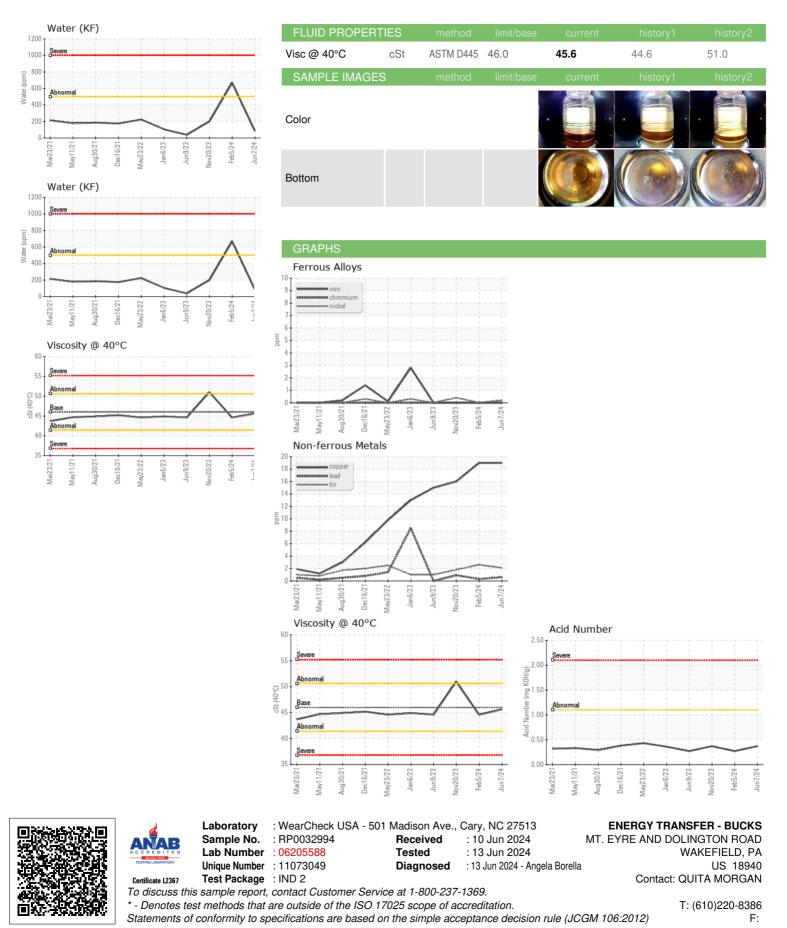
Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

The water content is negligible. There is no indication of any contamination in the oil.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

SAMPLE INFORM	1ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		RP0032994	RP0031918	RP0031966
Sample Date		Client Info		07 Jun 2024	05 Feb 2024	20 Nov 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	0	0	0
Chromium	ppm	ASTM D5185m	>20	0	0	0
Nickel	ppm	ASTM D5185m	>20	<1	0	<1
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>20	<1	0	<1
Lead	ppm	ASTM D5185m	>20	<1	<1	<1
Copper	ppm	ASTM D5185m	>20	19	19	16
Tin	ppm	ASTM D5185m	>20	2	3	2
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	0	0
Barium	ppm	ASTM D5185m	0	<1	0	0
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m		<1	0	0
Magnesium	ppm	ASTM D5185m	95	71	48	67
Calcium	ppm	ASTM D5185m	0	4	0	2
Phosphorus	ppm	ASTM D5185m	0	6	0	3
Zinc	ppm	ASTM D5185m	0	7	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	9	6	8
Sodium	ppm	ASTM D5185m		3	2	0
Potassium	ppm	ASTM D5185m	>20	3	0	1
Water	%	ASTM D6304	>0.05	0.008	0.066	0.019
ppm Water	ppm	ASTM D6304	>500	84	668	200
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.37	0.27	0.369
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	Submeted By: A	DAMEL Page 1 of 2

OIL ANALYSIS REPORT

Report Id: ENEWAK [WUSCAR] 06205588 (Generated: 06/14/2024 03:35:24) Rev: 1

Submitted By: ADAM HUMMEL

Page 2 of 2