

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

RECO TYSNAS 500 2 (S/N M53375)

Refrigeration Compressor

Fluid

USPI ALT-68 SC (75 GAL)

DIAGNOSIS

Recommendation

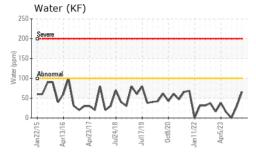
Resample at the next service interval to monitor.

Wear

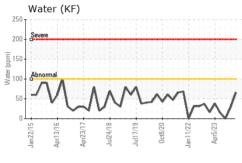
All component wear rates are normal.

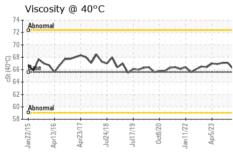
Contamination

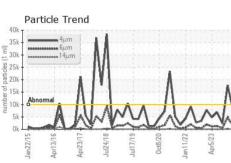
There is no indication of any contamination in the component. The amount and size of particulates present in the system is acceptable.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


		12015 Apr20	16 Apr2017 Jul2018	Jul2019 Oct2020 Jan2022 A	pr2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0013398	USP0007260	USP0001269
Sample Date		Client Info		11 Jun 2024	05 Feb 2024	15 Oct 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	ATTENTION	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	0	0	0
Chromium	ppm	ASTM D5185m	>2	0	0	0
Nickel	ppm	ASTM D5185m		0	0	<1
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	0	0
Lead	ppm	ASTM D5185m	>2	0	<1	<1
Copper	ppm	ASTM D5185m	>8	0	<1	0
Tin	ppm	ASTM D5185m	>4	0	0	0
Vanadium	ppm	ASTM D5185m		<1	<1	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	<1	0
Magnesium	ppm	ASTM D5185m		<1	0	0
Calcium	ppm	ASTM D5185m		0	0	0
Phosphorus	ppm	ASTM D5185m		<1	0	0
Zinc	ppm	ASTM D5185m		0	0	<1
Sulfur	ppm	ASTM D5185m	50	0	5	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	2	2	2
Sodium	ppm	ASTM D5185m		0	<1	0
Potassium	ppm	ASTM D5185m	>20	1	2	<1
Water	%	ASTM D6304	>0.01	0.006	0.003	0.00
ppm Water	ppm	ASTM D6304	>100	66	29	0.00
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	8064	17759	2295
Particles >6µm		ASTM D7647	>2500	1390	4770	529
Particles >14µm		ASTM D7647	>320	23	186	18
Particles >21µm		ASTM D7647	>80	3	37	4
Particles >38µm		ASTM D7647	>20	0	1	1
Particles >71μm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	20/18/12	21/19/15	18/16/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.014	0.012

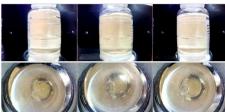


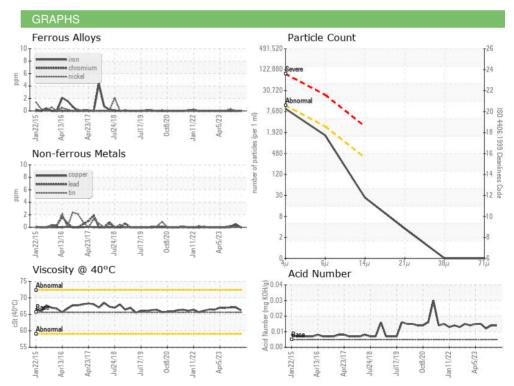

OIL ANALYSIS REPORT

Par 40k 35k	ticle T	rend	. 1					
<u>=</u> 30k - ■■■	14 <i>j</i>	m um	M					
25k - 20k -	omal	1						٨
10k - 60m	A	W	W	\sqrt{N}	1	M	<u>M</u>	1
Jan22/15	Apr13/16	Apr23/17	Jul24/18	Jul17/19	0ct8/20	Jan11/22	Apr5/23	

VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG

FLUID FROFER	THES	method			HISTORY	HISTORYZ
Visc @ 40°C	cSt	ASTM D445	65.6	66.2	67.1	67.1


SAMPLE	IMAGES	



Bottom

Color

Certificate 12367

Laboratory Sample No. Lab Number : 06207890 Unique Number : 11075351 Test Package : IND 2

: USP0013398

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 12 Jun 2024

Tested : 14 Jun 2024 Diagnosed

: 15 Jun 2024 - Doug Bogart

TYSON -NASHVILLE-USP

NASHVILLE, AR US

Contact: SERVICE MANAGER

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: