

OIL ANALYSIS REPORT

KANSAS/44/EG - EXCAVATOR

Sample Rating Trend NORMAL

20.509L [KANSAS^44^EG - EXCAVATOR] Hydraulic System MOBIL MOBILTRANS AST 30 (--- GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Area

Wear

All component wear rates are normal.

Contamination

The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The system and fluid cleanliness is acceptable.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

		method	iiiiii/base	Current	nistory i	TIIStOryz
Sample Number		Client Info		WC0918238	WC0789931	WC0789774
Sample Date		Client Info		06 Jun 2024	12 May 2023	08 Mar 2023
Machine Age	hrs	Client Info		10102	9445	9179
Oil Age	hrs	Client Info		1439	8929	8959
Oil Changed		Client Info		Not Changd	Not Changd	Not Changd
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATIO	N	method	limit/base	current	history1	history2
Water		WC Method	>0.1	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	8	7	4
Chromium	ppm	ASTM D5185m	>10	<1	<1	<1
Nickel	ppm	ASTM D5185m	>10	0	0	0
Titanium	ppm	ASTM D5185m		<1	<1	<1
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>10	2	2	2
Lead	ppm	ASTM D5185m	>10	0	0	0
Copper	maa	ASTM D5185m	>75	2	1	1
Tin	ppm	ASTM D5185m	>10	0	<1	0
Vanadium	ppm	ASTM D5185m		<1	0	<1
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	nnm	ASTM D5185m		28	27	26
Barium	nom	ASTM D5185m		0	0	0
Molybdenum	nom	ASTM D5185m		3	1	1
Manganese	ppm	ASTM D5185m		-1	-1	-1
Maganese	ppm	ASTM D5185m		14	23	21
Calcium	ppm	ASTM D5185m		2479	2484	2476
Phoenhorue	ppm	AGTM D5105III		2470	058	2470
Zino	ppm	AGTM D5105m		975	1172	1006
ZITIC	ppm	AGTM DE105m		1150	1173	1096
Sullui	ррпп	ASTIM DOTODIII		4780	4970	4303
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	7	7	6
Sodium	ppm	ASTM D5185m		4	3	2
Potassium	ppm	ASTM D5185m	>20	<1	2	0
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		2682	759	2340
Particles >6µm		ASTM D7647	>2500	211	69	316
Particles >14µm		ASTM D7647	>640	19	6	28
Particles >21µm		ASTM D7647	>160	6	1	5
Particles >38µm		ASTM D7647	>40	0	0	0
Particles >71µm		ASTM D7647	>10	0	0	0
Oil Cleanliness		ISO 4406 (c)	>/18/16	19/15/11	17/13/10	18/15/12
FLUID DEGRADA		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/a	ASTM D8045		1.00	0.98	0.83
00.40) Dov: 1	0 - 0				Submitted Dur	

Report Id: SHEWIC [WUSCAR] 06208661 (Generated: 06/15/2024 13:02:48) Rev: 1

Submitted By: JAMES MOORE

OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	57.6	82.3	83.1	82.5
SAMPLE IMAGES	\$	method	limit/base	current	history1	history2
Color						
Bottom						

Laboratory Sample No. Lab Number : 06208661 Tested : 14 Jun 2024 WICHITA, KS Unique Number : 11076122 Diagnosed : 14 Jun 2024 - Wes Davis US 67213 Test Package : CONST Contact: DOUG KING Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369. doug.king@sherwood.net * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. T: (316)617-3161 F: x:

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: SHEWIC [WUSCAR] 06208661 (Generated: 06/15/2024 13:02:48) Rev: 1

Submitted By: JAMES MOORE

Page 2 of 2