

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

P-031636 EXPANDER

Component Pump Hydraulic System

USPI FG HYD 46 (--- GAL)

DIAGNOSIS

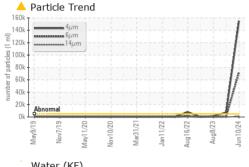
Recommendation

We recommend you service the filters on this component. Resample at the next service interval to monitor.

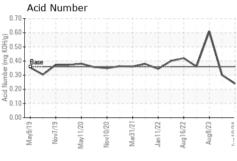
All component wear rates are normal.

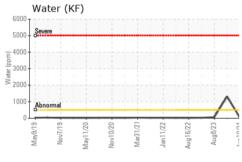
Contamination

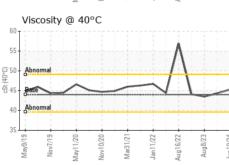
There is a high amount of particulates present in the oil.


Fluid Condition

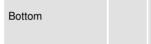
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

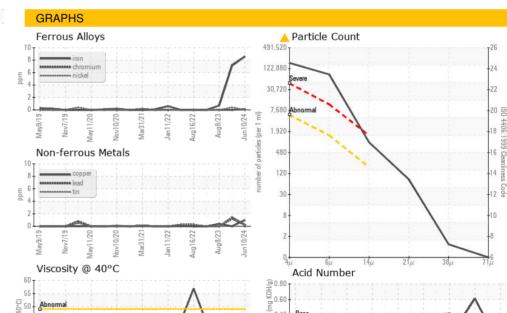

		fay2019 Nov2	019 May2020 Nov2020	Mar2021 Jan2022 Aug2022 Aug	2023 Jun202	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USPM37657	USPM30243	USPM29178
Sample Date		Client Info		10 Jun 2024	21 Feb 2024	08 Aug 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ABNORMAL	ABNORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	9	7	<1
Chromium	ppm	ASTM D5185m	>20	<1	0	0
Nickel	ppm	ASTM D5185m	>20	0	<1	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m		0	0	<1
Aluminum	ppm	ASTM D5185m	>20	0	<1	<1
Lead	ppm	ASTM D5185m	>20	<1	1	0
Copper	ppm	ASTM D5185m	>20	1	0	<1
Tin	ppm	ASTM D5185m	>20	<1	2	0
Vanadium	ppm	ASTM D5185m		0	<1	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		<1	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m		<1	0	0
Calcium	ppm	ASTM D5185m		0	0	0
Phosphorus	ppm	ASTM D5185m	725	473	512	450
Zinc	ppm	ASTM D5185m		0	5	9
Sulfur	ppm	ASTM D5185m	625	480	550	542
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	3	4	3
Sodium	ppm	ASTM D5185m		0	0	0
Potassium	ppm	ASTM D5185m	>20	<1	<1	0
Water	%	ASTM D6304	>0.05	0.002	△ 0.132	0.006
ppm Water	ppm	ASTM D6304	>500	20	▲ 1320	67.7
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4μm		ASTM D7647	>5000	<u> </u>	7098	1453
Particles >6µm		ASTM D7647	>1300	<u>^</u> 72219	661	109
Particles >14μm		ASTM D7647	>160	<u> </u>	31	13
Particles >21µm		ASTM D7647	>40	<u>^</u> 72	9	4
Particles >38µm		ASTM D7647	>10	1	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>19/17/14	<u>4</u> 24/23/17	20/17/12	18/14/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.36	0.24	0.30	0.61




OIL ANALYSIS REPORT

Wa	ter (K	F)				
5000 - Seve	ere			-	-	
E 4000						
4000 - 40						
1000 Abn	ormal					1
0						





V//OLIA1						
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	0.2%	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERTIES		method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	44	45.3	44.3	43.5
SAMPLE IMAGES		method	limit/base	current	history1	history2

Color

0.00 Acid

Certificate 12367

Report Id: CARGAI [WUSCAR] 06209268 (Generated: 06/16/2024 16:14:34) Rev: 1

Laboratory Sample No.

: USPM37657 Lab Number : 06209268 Unique Number : 11076729 Test Package : IND 2

To discuss this sample report, contact Customer Service at 1-800-237-1369.

40

35

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 13 Jun 2024

Tested : 16 Jun 2024 Diagnosed : 16 Jun 2024 - Doug Bogart

CARGILL OIL SEEDS- GAINESVILLE

862 WEST RIDGE ROAD GAINESVILLE, GA US 30501

Contact: robyn wilbanks robyn_wilbanks@cargill.com T: (770)531-4736

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: robyn wilbanks - CARGAI

F: (770)538-6251