

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

SULLAIR AIR 2 SLA (S/N 20210800043)

Air Compressor

USPI MAX FG AIR 46 (--- GAL)

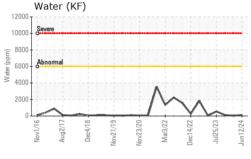
Recommendation

Resample at the next service interval to monitor.

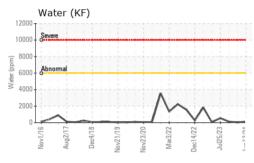
All component wear rates are normal.

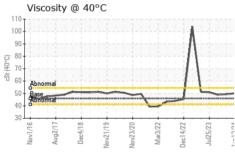
Contamination

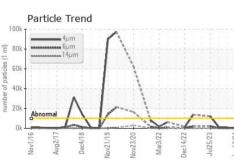
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

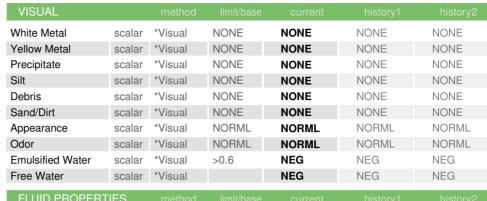

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

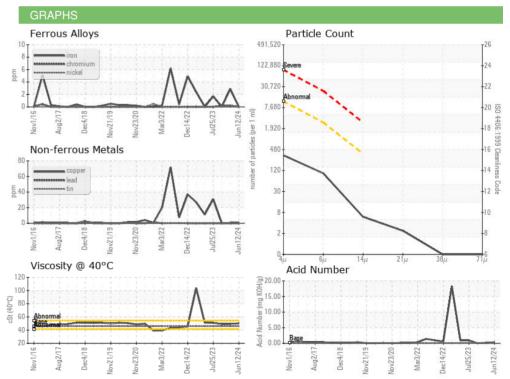

112016 Aug2017 Dec2018 Nev2018 Nev2020 Mar2022 Dec2022 Jui2023 Jui20.						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USPM37813	USPM30491	USPM31330
Sample Date		Client Info		12 Jun 2024	05 Mar 2024	14 Nov 2023
Machine Age	hrs	Client Info		19925	17621	15040
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	0	3	0
Chromium	ppm	ASTM D5185m	>4	0	<1	<1
Nickel	ppm	ASTM D5185m	>4	0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>10	<1	<1	1
Lead	ppm	ASTM D5185m	>20	0	0	0
Copper	ppm	ASTM D5185m	>40	<1	<1	<1
Tin	ppm	ASTM D5185m	>5	<1	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	0	0
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m		<1	<1	0
Magnesium	ppm	ASTM D5185m	0	0	0	0
Calcium	ppm	ASTM D5185m	0	0	<1	<1
Phosphorus	ppm	ASTM D5185m	0	1	0	0
Zinc	ppm	ASTM D5185m	0	0	0	0
Sulfur	ppm	ASTM D5185m	0	20	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	<1	0	<1
Sodium	ppm	ASTM D5185m		2	<1	0
Potassium	ppm	ASTM D5185m	>20	2	0	<1
Water	%	ASTM D6304	>0.6	0.013	0.003	0.012
ppm Water	ppm	ASTM D6304	>6000	131	36	125
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	289	752	1043
Particles >6µm		ASTM D7647	>2500	88	178	257
Particles >14μm		ASTM D7647	>320	5	3	14
Particles >21μm		ASTM D7647	>80	2	1	4
Particles >38μm		ASTM D7647	>20	0	0	0
Particles >71μm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	15/14/10	17/15/9	17/15/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.16	0.33	0.182	0.05




OIL ANALYSIS REPORT



80k	4	μm μm 4μm	1					
80k 60k 40k	***************************************	4)2111	1	A.				
8. 5 40k⋅ B			1	1				
20k	Abnormal	Λ	1			- 1		
0k	- The state of the			na per celler by see	Standard .	THE PERSON NAMED IN	III. III. III.	CONTRACT.


I LOID I NOI L	ITTILO	memou			HISTOLAL	HISTOLYZ
Visc @ 40°C	cSt	ASTM D445	45.8	50.2	49.3	48.9

SAMPLE IMAGES

Color

Bottom

Laboratory

Sample No.

: USPM37813 Lab Number : 06214021 Unique Number : 11086885

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 18 Jun 2024 **Tested** : 20 Jun 2024

Diagnosed : 21 Jun 2024 - Doug Bogart **TYSON - AMARILLO-PRO**

AMARILLO, TX US

Contact: SERVICE MANAGER

Test Package : IND 2 Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: