

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

BUSCH PR5-504 S2 (S/N C4507)

Pump

USPI VAC 100 (--- GAL)

DIAGNOSIS

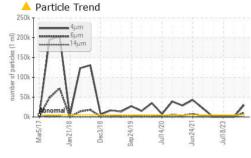
Recommendation

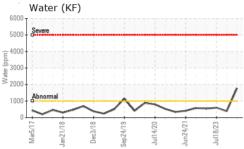
We recommend you service the filters on this component. Resample at the next service interval to monitor.

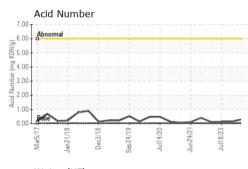
All component wear rates are normal.

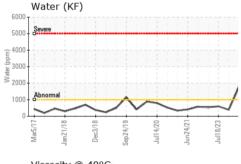
Contamination

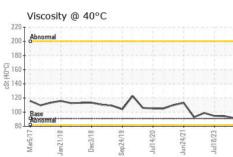
There is a high amount of particulates present in the oil. There is a trace of moisture present in the

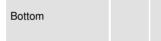

Fluid Condition


The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


1ar2017 Jan2018 Dex2018 Sep2019 Jun2020 Jun2021 Jun2023									
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2			
Sample Number		Client Info		USPM37802	USPM30843	USPM27900			
Sample Date		Client Info		01 Jun 2024	17 Nov 2023	18 Jul 2023			
Machine Age	hrs	Client Info		0	0	0			
Oil Age	hrs	Client Info		0	0	0			
Oil Changed		Client Info		N/A	N/A	N/A			
Sample Status				ABNORMAL	NORMAL	NORMAL			
WEAR METALS		method	limit/base	current	history1	history2			
Iron	ppm	ASTM D5185m	>90	4	4	5			
Chromium	ppm	ASTM D5185m	>5	0	<1	0			
Nickel	ppm	ASTM D5185m	>5	<1	0	<1			
Titanium	ppm	ASTM D5185m	>3	0	<1	0			
Silver	ppm	ASTM D5185m	>3	0	0	0			
Aluminum	ppm	ASTM D5185m	>7	<1	2	<1			
Lead	ppm	ASTM D5185m	>12	0	<1	0			
Copper	ppm	ASTM D5185m	>30	2	<1	<1			
Tin	ppm	ASTM D5185m	>9	<1	<1	0			
Vanadium	ppm	ASTM D5185m		0	0	0			
Cadmium	ppm	ASTM D5185m		0	0	0			
ADDITIVES		method	limit/base	current	history1	history2			
Boron	ppm	ASTM D5185m	0	<1	0	0			
Barium	ppm	ASTM D5185m	0	0	0	<1			
Molybdenum	ppm	ASTM D5185m	0	0	<1	0			
Manganese	ppm	ASTM D5185m		<1	0	0			
Magnesium	ppm	ASTM D5185m	0	<1	0	0			
Calcium	ppm	ASTM D5185m	0	0	2	2			
Phosphorus	ppm	ASTM D5185m	1800	1034	876	921			
Zinc	ppm	ASTM D5185m	0	9	0	1			
Sulfur	ppm	ASTM D5185m	0	19	0	26			
CONTAMINANTS		method	limit/base	current	history1	history2			
Silicon	ppm	ASTM D5185m	>60	20	18	17			
Sodium	ppm	ASTM D5185m		2	0	0			
Potassium	ppm	ASTM D5185m	>20	4	2	<1			
Water	%	ASTM D6304	>.1	0.177	0.038	0.059			
ppm Water	ppm	ASTM D6304	>1000	1779	388	598.6			
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2			
Particles >4μm		ASTM D7647	>5000	29978	255	436			
Particles >6µm		ASTM D7647	>1300	10611	81	132			
Particles >14µm		ASTM D7647	>160	<u>▲</u> 637	9	11			
Particles >21µm		ASTM D7647	>40	<u>^</u> 229	3	3			
Particles >38µm		ASTM D7647	>10	<u> </u>	0	0			
Particles >71µm		ASTM D7647	>3	<u> </u>	0	0			
Oil Cleanliness		ISO 4406 (c)	>19/17/14	△ 22/21/16	15/14/10	16/14/11			
FLUID DEGRADA	TION	method	limit/base	current	history1	history2			
Acid Number (AN)	mg KOH/g	ASTM D8045	0.05	0.29	0.15	0.13			




OIL ANALYSIS REPORT



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	LIGHT	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IEQ	method	limit/base	ourropt	history1	history2
FLUID PROPERI	ILO	method	IIIIII/Dase	current	HISTORYT	HIStory2
Visc @ 40°C	cSt	ASTM D445	91	91.5	94.1	94.7

limit/base

method

Color

SAMPLE IMAGES

history1

current

history2

GRAPHS Ferrous Alloys Particle Count 491.520 122,880 30.72 1,920 Non-ferrous Metals 480 120 Viscosity @ 40°C Acid Number 250 00.8 (mg KOH/g) 00.9 4.00 200 (5° 05) SS 00.00 PG

Certificate 12367

Laboratory Sample No.

: USPM37802 Lab Number : 06214032 Unique Number : 11086896 Test Package : IND 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 18 Jun 2024

Tested : 20 Jun 2024 Diagnosed : 21 Jun 2024 - Doug Bogart Emporia, KS US 66801

Contact: SERVICE MANAGER

TYSON-Emporia-USP

2101 West Sixth

T: (620)343-3640

F: (620)340-1253

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)