

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

FES LOPOKL/FES RC6 (S/N 2053468)

Refrigeration Compressor

USPI ALT-68 SC (--- GAL)

DIAGNOSIS

Recommendation

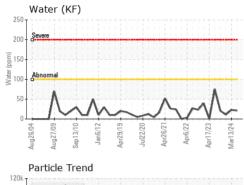
Resample at the next service interval to monitor.

Wear

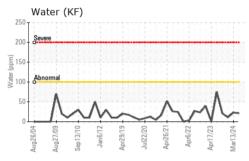
All component wear rates are normal.

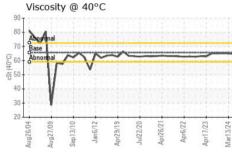
Contamination

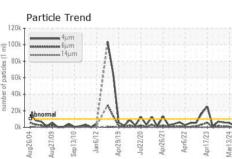
There is no indication of any contamination in the component. The amount and size of particulates present in the system is acceptable.


Fluid Condition

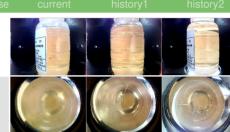
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

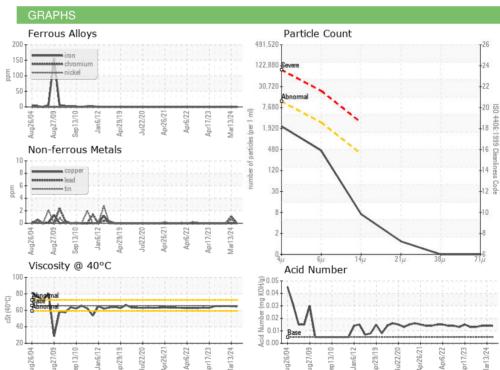

0004 Aug-0005 Sup2010 Sun2012 Rev2015 Su0202 Aur2022 Aur2022 Rev2023 Mar2024								
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2		
Sample Number		Client Info		USP0013082	USP0005946	USP0004665		
Sample Date		Client Info		23 Jun 2024	13 Mar 2024	04 Jan 2024		
Machine Age	hrs	Client Info		0	0	0		
Oil Age	hrs	Client Info		0	0	0		
Oil Changed		Client Info		N/A	N/A	N/A		
Sample Status				NORMAL	NORMAL	NORMAL		
WEAR METALS		method	limit/base	current	history1	history2		
Iron	ppm	ASTM D5185m	>8	0	0	0		
Chromium	ppm	ASTM D5185m	>2	0	<1	<1		
Nickel	ppm	ASTM D5185m		0	0	0		
Titanium	ppm	ASTM D5185m		0	<1	0		
Silver	ppm	ASTM D5185m	>2	0	<1	0		
Aluminum	ppm	ASTM D5185m	>3	0	0	1		
Lead	ppm	ASTM D5185m	>2	0	1	0		
Copper	ppm	ASTM D5185m	>8	0	0	0		
Tin	ppm	ASTM D5185m	>4	0	<1	0		
Vanadium	ppm	ASTM D5185m		0	<1	0		
Cadmium	ppm	ASTM D5185m		0	<1	0		
ADDITIVES		method	limit/base	current	history1	history2		
Boron	ppm	ASTM D5185m		0	0	0		
Barium	ppm	ASTM D5185m		0	0	0		
Molybdenum	ppm	ASTM D5185m		0	0	0		
Manganese	ppm	ASTM D5185m		0	<1	0		
Magnesium	ppm	ASTM D5185m		0	0	0		
Calcium	ppm	ASTM D5185m		0	0	0		
Phosphorus	ppm	ASTM D5185m		0	0	0		
Zinc	ppm	ASTM D5185m		0	0	0		
Sulfur	ppm	ASTM D5185m	50	0	0	0		
CONTAMINANTS		method	limit/base	current	history1	history2		
Silicon	ppm	ASTM D5185m	>15	<1	<1	0		
Sodium	ppm	ASTM D5185m		<1	1	0		
Potassium	ppm	ASTM D5185m	>20	0	1	1		
Water	%	ASTM D6304	>0.01	0.002	0.002	0.001		
ppm Water	ppm	ASTM D6304	>100	21	23	11		
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2		
Particles >4µm		ASTM D7647	>10000	1947	5069	5872		
Particles >6µm		ASTM D7647	>2500	391	677	1175		
Particles >14µm		ASTM D7647	>320	6	11	39		
Particles >21µm		ASTM D7647	>80	1	2	7		
Particles >38µm		ASTM D7647	>20	0	0	0		
Particles >71µm		ASTM D7647	>4	0	0	0		
Oil Cleanliness		ISO 4406 (c)	>20/18/15	18/16/10	20/17/11	20/17/12		
FLUID DEGRADA	TION	method	limit/base	current	history1	history2		
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.014	0.014		




OIL ANALYSIS REPORT

120k - 100k -			4μm 6μm		4					
	*****		14μm		1					
60k -				i	1					
number of particles (1 80k - 40k - 4	-				1					
E 20k⋅	Abno	ormal		1	1				1	
0k	40	60	01	12	- 51	X _X	<u> </u>	→ 77	23	- 54 - 54
	Aug26/04	Aug27/09	Sep13/10	Jan6/12	Apr29/19	Jul22/20	Apr26/21	Apr6/22	Apr17/23	Mar13/24


VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	TES	method				history2


Visc @ 40°C	cSt	ASTM D445	65.6	64.6	65.1	65.2
-------------	-----	-----------	------	------	------	------

Color

Bottom

SAMPLE IMAGES

Certificate 12367

Laboratory Sample No.

Lab Number : 06218264

: USP0013082

Unique Number : 11096461 Test Package : IND 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 24 Jun 2024

Tested : 25 Jun 2024 Diagnosed : 25 Jun 2024 - Doug Bogart OKLAHOMA CITY, OK US 73127

LOPEZ FOODS-OKLAHOMA CITY

Contact: John Myers

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T: (405)789-7500

F: (405)499-0128