

OIL ANALYSIS REPORT

ančel i krvite Begizzi Markiz Begizzi Janizzi Dezizzi Janizzi

Sample Rating Trend

KAESER 4098280 - ROCHLING AUTOMOTIVE (S/N 1045) Component Compressor

Fluid KAESER SIGMA (OEM) S-460 (8 GAL)

DIAGNOSIS

Recommendation

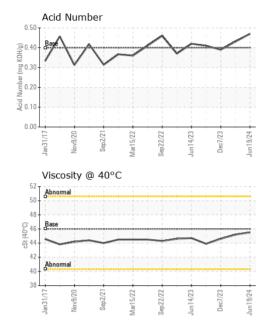
Resample at the next service interval to monitor.

Wear

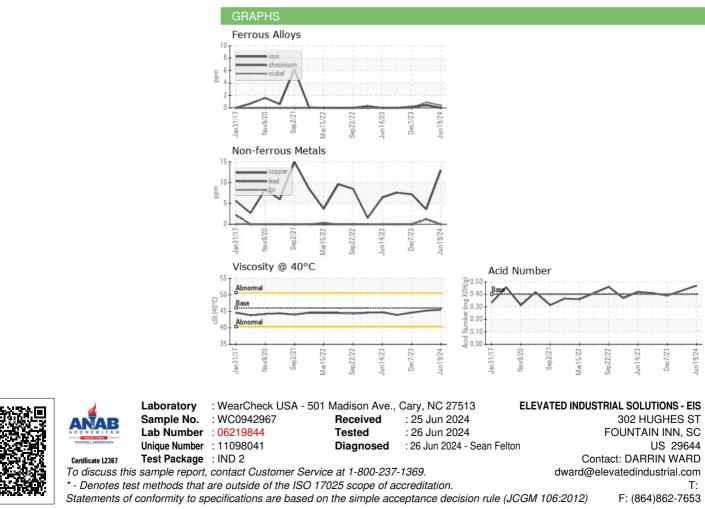
All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


SAMPLE INFORM	NATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0942967	WC0915264	WC0863718
Sample Date		Client Info		19 Jun 2024	27 Mar 2024	07 Dec 2023
Machine Age	hrs	Client Info		81212	79201	76595
Oil Age	hrs	Client Info		76595	1000	7000
Oil Changed		Client Info		N/A	Not Changd	Changed
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATIO	N	method	limit/base	current	history1	history2
Water		WC Method	>0.05	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	0	<1	0
Chromium	ppm	ASTM D5185m	>10	0	<1	<1
Nickel	ppm	ASTM D5185m	>3	<1	<1	0
Titanium	ppm	ASTM D5185m	>3	0	<1	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>10	<1	1	1
Lead	ppm	ASTM D5185m	>10	0	1	0
Copper	ppm	ASTM D5185m	>50	13	4	7
Tin	ppm	ASTM D5185m	>10	0	1	0
Vanadium	ppm	ASTM D5185m		0	<1	0
Cadmium	ppm	ASTM D5185m		0	1	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m	90	6	3	0
Molybdenum	ppm	ASTM D5185m		0	<1	0
Manganese	ppm	ASTM D5185m		<1	<1	0
Magnesium	ppm	ASTM D5185m	90	0	5	0
Calcium	ppm	ASTM D5185m	2	0	3	0
Phosphorus	ppm	ASTM D5185m		2	4	35
Zinc	ppm	ASTM D5185m		0	<1	0
Sulfur	ppm	ASTM D5185m		18098	17498	14611
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	0	0	0
Sodium	ppm	ASTM D5185m		2	2	0
Potassium	ppm	ASTM D5185m	>20	1	1	0
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.4	0.47	0.43	0.39

OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	LIGHT	NONE	LIGHT
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	46	45.5	45.2	44.6
SAMPLE IMAGES	\$	method	limit/base	current	history1	history2
			-			
Color						

Submitted By: DARRIN WARD