

FUEL REPORT

Area MUSC Columbia - Downtown [18597] [MUSC Columbia - Downtown] TANK 2 MAIN 1

Right Diesel Fuel

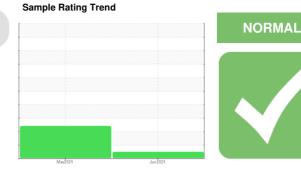
No.2 DIESEL FUEL (ULTRALOW SULPHUR) (15000 GAL)

DIAGNOSIS

Recommendation

All laboratory tests indicate that this sample meets specifications for No.2 low-sulfur diesel fuel.

Corrosion

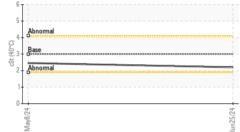

All metal levels are normal indicating no corrosion in the system.

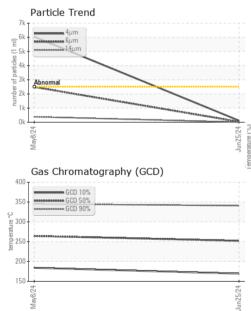
Contaminants

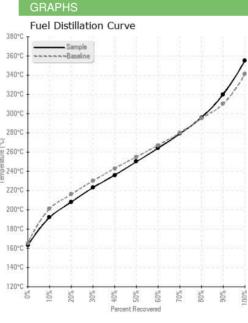
The water content is negligible. There is no bacteria or fungus (yeast and/or mold) indicated in the sample. There is no indication of any contamination in the fuel. The amount and size of particulates present in the system are acceptable.

Fuel Condition

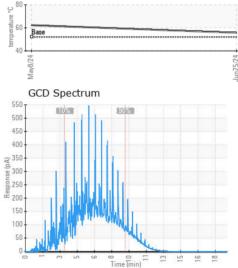
Sulfur value derived by ASTM D5453 method for ULSD validation.




SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC06220595	WC06179665	
Sample Date		Client Info		25 Jun 2024	08 May 2024	
Machine Age	hrs	Client Info		0	0	
Sample Status				NORMAL	ABNORMAL	
PHYSICAL PROP	ERTIES	method	limit/base	current	history1	history2
Fuel Color	text	*Visual Screen	Yllow		Red	
ASTM Color	scalar	*ASTM D1500		L4.0	L4.0	
Visc @ 40°C	cSt	ASTM D445	3.0	2.2	2.46	
Pensky-Martens Flash Point	°C	*PMCC Calculated	52	55.7	62.3	
SULFUR CONTE	NT	method	limit/base	current	history1	history2
Sulfur	ppm	ASTM D5185m	10	0	31	
Sulfur (UVF)	ppm	ASTM D5453		52	35	
DISTILLATION		method	limit/base	current	history1	history2
Initial Boiling Point	°C	ASTM D86	165	163	174	
5% Distillation Point	°C	ASTM D86		182	196	
10% Distill Point	°C	ASTM D86	201	192	206	
15% Distillation Point	°C	ASTM D86		200	214	
20% Distill Point	°C	ASTM D86	216	208	222	
30% Distill Point	°C	ASTM D86	230	223	236	
40% Distill Point	°C	ASTM D86	243	236	249	
50% Distill Point	°C	ASTM D86	255	250	262	
60% Distill Point	°C	ASTM D86	267	264	275	
70% Distill Point	°C	ASTM D86	280	279	288	
80% Distill Point	°C	ASTM D86	295	296	303	
85% Distillation Point	°C	ASTM D86		308	314	
90% Distill Point	°C	ASTM D86	310	320	325	
95% Distillation Point	°C	ASTM D86		340	343	
Final Boiling Point	°C	ASTM D86	341	355	357	
IGNITION QUALI	ΓY	method	limit/base	current	history1	history2
API Gravity		ASTM D7777	37.7	36	36	
Cetane Index		ASTM D4737	<40.0	45	48	
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	<1.0	0	0	
Sodium	ppm	ASTM D5185m	<0.1	<1	<1	
Potassium	ppm	ASTM D5185m	<0.1	0	0	
Water	%	ASTM D6304	<0.05	0.004	0.004	
ppm Water	ppm	ASTM D6304	<500	42	46	
% Gasoline	%	*In-House	<0.50	2.1	0.0	
% Biodiesel	%	*In-House	<20.0	0.0	0.0	


FUEL REPORT

1,520 T			
			T ²⁶
2,880			-24
0,720 Severe			22
7,680 Abnormal			20
1,920			18
480			-16
120			14
30-			-20 -18 -16 -14 -12 -10
8-			
2-	and the second se		-8
0 _{4μ} 6μ 14μ 2	1μ 3	Βμ 7	6 1µ
600 - Abnormal			
400 200 0			
200 -			21.04



FLUID CLEANL	INESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>2500	116	▲ 6045	
Particles >6µm		ASTM D7647	>640	30	4 2487	
Particles >14µm		ASTM D7647	>80	3	A 384	
Particles >21µm		ASTM D7647	>20	1	1 17	
Particles >38µm		ASTM D7647	>4	0	5	
Particles >71µm		ASTM D7647	>3	0	0	
Oil Cleanliness		ISO 4406 (c)	>18/16/13	14/12/9	🔺 20/18/16	
HEAVY METALS	S	method	limit/base	current	history1	history2
Aluminum	ppm	ASTM D5185m	<0.1	0	0	
Nickel	ppm	ASTM D5185m	<0.1	0	0	
Lead	ppm	ASTM D5185m	<0.1	0	0	
Vanadium	ppm	ASTM D5185m	<0.1	0	0	
Iron	ppm	ASTM D5185m	<0.1	0	0	
Calcium	ppm	ASTM D5185m	<0.1	0	0	
Magnesium	ppm	ASTM D5185m	<0.1	0	0	
Phosphorus	ppm	ASTM D5185m	<0.1	0	0	
Zinc	ppm	ASTM D5185m	<0.1	0	0	
SAMPLE IMAGE	ES	method	limit/base	current	history1	history2
Color						no image
Bottom						no image

Sample No. : WC06220595 Received : 25 Jun 2024 210 POWELL DR Lab Number : 06220595 Tested : 01 Jul 2024 SUMMERVILLE, SC : 01 Jul 2024 - Elizabeth Valachovic Unique Number : 11098792 Diagnosed Test Package : DF-2 (Additional Tests: Fuel, Screen) Contact: AJAY EL Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369. Ajay@prsfuel.com * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. T: (843)225-1777 Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

: WearCheck USA - 501 Madison Ave., Cary, NC 27513

Report Id: PETSUM [WUSCAR] 06220595 (Generated: 07/02/2024 04:14:50) Rev: 1

Laboratory

Contact/Location: AJAY EL - PETSUM

PETROLEUM RECOVERY SERVICES

F:

US 29483