

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

033CM412.001-PT

Turbine

ROYAL PURPLE SYNFILM GT 32 (500 GAL)

DIAGNOSIS

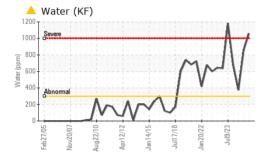
Recommendation

No corrective action is recommended at this time. Resample at the next service interval to monitor.

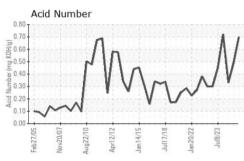
All component wear rates are normal.

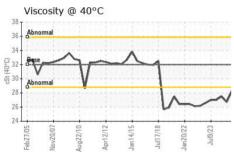
Contamination

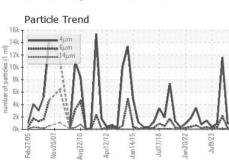
There is a trace of moisture present in the oil. The amount and size of particulates present in the system are acceptable.

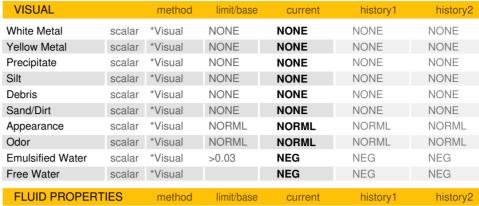

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

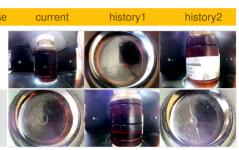

52005 Nov2007 Aug2010 Apr2012 Jan2015 Jul2018 Jan2022 Jul2023						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		RP0041061	RP0041056	RP0027571
Sample Date		Client Info		11 Jul 2024	09 Apr 2024	21 Jan 2024
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				MARGINAL	ABNORMAL	ATTENTION
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>15	0	0	4
Chromium	ppm	ASTM D5185m	>4	0	0	0
Nickel	ppm	ASTM D5185m	>2	0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>10	0	0	0
Lead	ppm	ASTM D5185m		0	0	0
Copper	ppm	ASTM D5185m	>5	0	0	2
Tin	ppm	ASTM D5185m	>5	0	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	<1
Magnesium	ppm	ASTM D5185m		<1	<1	1
Calcium	ppm	ASTM D5185m		<1	0	3
Phosphorus	ppm	ASTM D5185m		2299	2110	2154
Zinc	ppm	ASTM D5185m		0	0	0
CONTAMINANTS	5	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	<1	1
Sodium	ppm	ASTM D5185m		1	0	<1
Potassium	ppm	ASTM D5185m	>20	0	0	0
Water	%	ASTM D6304	>0.03	<u> </u>	△ 0.085	△ 0.037
ppm Water	ppm	ASTM D6304	>300	<u> </u>	<u></u> 858	△ 375
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		492	1008	11610
Particles >6µm		ASTM D7647		93	151	2152
Particles >14µm		ASTM D7647	>160	10	17	166
Particles >21µm		ASTM D7647		2	5	45
Particles >38µm		ASTM D7647	>10	0	0	1
Particles >71µm		ASTM D7647		0	0	0
Oil Cleanliness		ISO 4406 (c)	>/17/14	16/14/10	17/14/11	21/18/15
FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.70	0.49	0.33

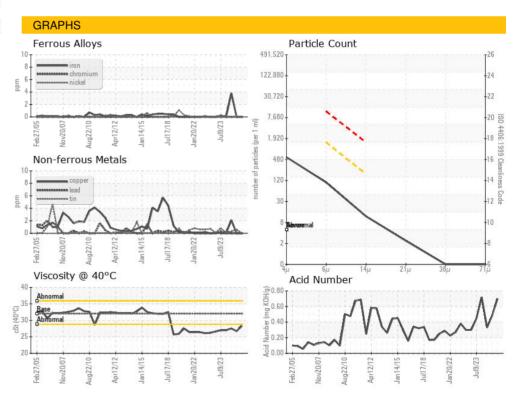



OIL ANALYSIS REPORT



Part	icle Tr	end						
14k -	4μn 6μn	1		A				
(m 12k - 10k	14μ	N	1	1				
bed 8k		Λ		11	A			
g 4k N	1	AI	A		N	1		
Ok S	6		2			2	S 2	K
Feb27/05	Nov20/07	Aug22/10	Apr12/12	Jan14/15	Jul17/18	Jan20/2	Jul9/23	




FLUID PHOPENTIES		method	iiiiii/base	current	riistory i	History	
Visc @ 40°C	cSt	ASTM D445	32	28.3	26.7	27.5	

SAMPLE IMAGES	method	limit/base	current	history1	history2

Color

Laboratory Sample No. Lab Number

: RP0041061 : 06234928 Unique Number : 11123762

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received **Tested**

Diagnosed

: 12 Jul 2024 : 15 Jul 2024

: 15 Jul 2024 - Don Baldridge

Test Package : IND 2 (Additional Tests: PrtCount) Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

ENTERPRISE PRODUCTS

P.O. BOX 573 MONT BELVIEU, TX US 77580

Contact: TOMMY EDWARDS tedwards@eprod.com

> T: (281)217-1411 F: (281)385-4327

Report Id: ENTHOU [WUSCAR] 06234928 (Generated: 07/15/2024 14:10:58) Rev: 1

Contact/Location: TOMMY EDWARDS - ENTHOU