

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

FES AWG 5 (S/N 910034)

Refrigeration Compressor

Fluid USPI 1009-68 SC (--- GAL)

Recommendation

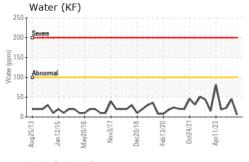
Resample at the next service interval to monitor.

Wear

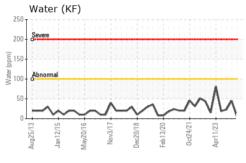
All component wear rates are normal.

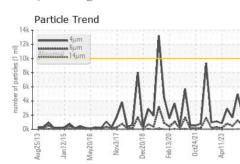
Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

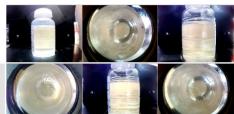

Fluid Condition

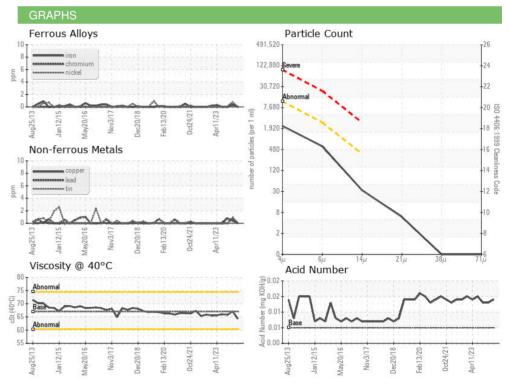
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


		g2013 Jan20	15 May2016 Nov2017	Dec2018 Feb2020 Oct2021 A	pr2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0012274	USP0007857	USP0004155
Sample Date		Client Info		10 Jul 2024	08 Apr 2024	07 Dec 2023
Machine Age	hrs	Client Info		176166	167944	165001
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	0	<1	0
Chromium	ppm	ASTM D5185m	>2	0	<1	0
Nickel	ppm	ASTM D5185m		0	<1	0
Titanium	ppm	ASTM D5185m		0	<1	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	<1	0	0
Lead	ppm	ASTM D5185m	>2	0	<1	0
Copper	ppm	ASTM D5185m	>8	0	<1	<1
Tin	ppm	ASTM D5185m	>4	<1	<1	0
Vanadium	ppm	ASTM D5185m		0	<1	0
Cadmium	ppm	ASTM D5185m		0	<1	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	<1	0
Manganese	ppm	ASTM D5185m		0	<1	<1
Magnesium	ppm	ASTM D5185m		0	<1	0
Calcium	ppm	ASTM D5185m		0	0	<1
Phosphorus	ppm	ASTM D5185m		0	0	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	0	0	46
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	2	1	0
Sodium	ppm	ASTM D5185m		0	0	2
Potassium	ppm	ASTM D5185m	>20	<1	<1	0
Water	%	ASTM D6304	>0.01	0.001	0.004	0.002
ppm Water	ppm	ASTM D6304	>100	6	45	23
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	1993	4958	1661
Particles >6µm		ASTM D7647	>2500	523	1242	442
Particles >14µm		ASTM D7647	>320	29	40	22
Particles >21µm		ASTM D7647	>80	5	8	6
Particles >38µm		ASTM D7647	>20	0	0	1
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	18/16/12	19/17/12	18/16/12
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.013	0.013


OIL ANALYSIS REPORT

12k - Abril 10k -	4μm 6μm 14μm						
8k -	anahaan		0.000		-		0000000
6k -				1	-		
4k -			A	$\Lambda . I$./.	Λ	1.1
ZK			$\lambda\lambda$	W	\mathcal{W}	N	LV.
	A STREET, SQUARE,	May20/16		00	8	21 Substanti	23
Ok Land	Jan 12/15				CVI	23	N


VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


FLUID PROPER	THES	method	ilmit/base		nistory i	nistory2
Visc @ 40°C	cSt	ASTM D445	67	64.3	67.1	65.7

SAMPLE IMAGES	method	limit/base	current	his

Color

Certificate 12367

Laboratory Sample No. Lab Number : 06234989

Test Package : IND 2

: USP0012274 Unique Number : 11123823

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 12 Jul 2024 **Tested** : 15 Jul 2024

Diagnosed

: 15 Jul 2024 - Doug Bogart

ELITE LOGISTICS-SPRINGFIELD

3201 E DIVISION SPRINGFIELD, MO US 65802

Contact: RICK DUVAL

T: (417)875-4270

F: (417)875-4089

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)