

OIL ANALYSIS REPORT

SPLITTER 1 078CM12002

Turbine

ROYAL PURPLE SYNFILM GT 32 (500 GAL)

Sample Rating Trend

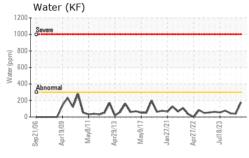
Recommendation

Resample at the next service interval to monitor.

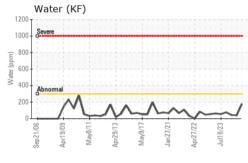
All component wear rates are normal.

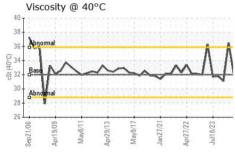
Contamination

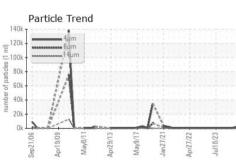
There is no indication of any contamination in the component. The amount and size of particulates present in the system is acceptable.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


-)		12000 Apri20	uo iviayzutt Apizuto	majeoti odnicoti ripitoti	3012023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		RP0027268	RP0040980	RP0027289
Sample Date		Client Info		15 Jul 2024	09 Apr 2024	27 Jan 2024
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>15	0	0	0
Chromium	ppm	ASTM D5185m	>4	0	0	0
Nickel	ppm	ASTM D5185m	>2	0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	<1
Aluminum	ppm	ASTM D5185m	>10	0	0	0
Lead	ppm	ASTM D5185m		0	0	0
Copper	ppm	ASTM D5185m	>5	8	25	23
Tin	ppm	ASTM D5185m	>5	0	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	<1
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	<1
Magnesium	ppm	ASTM D5185m		48	0	0
Calcium	ppm	ASTM D5185m		0	0	1
Phosphorus	ppm	ASTM D5185m		0	16	0
Zinc	ppm	ASTM D5185m		0	0	0
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	1	2	2
Sodium	ppm	ASTM D5185m		1	0	<1
Potassium	ppm	ASTM D5185m	>20	0	0	0
Water	%	ASTM D6304	>0.03	0.017	0.003	0.004
ppm Water	ppm	ASTM D6304	>300	179	39	44
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		2313	552	149
Particles >6µm		ASTM D7647	>1300	201	99	59
Particles >14µm		ASTM D7647	>160	19	15	11
Particles >21µm		ASTM D7647	>40	5	4	4
Particles >38µm		ASTM D7647	>10	0	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>/17/14	18/15/11	16/14/11	14/13/11
FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.39	0.39	0.37

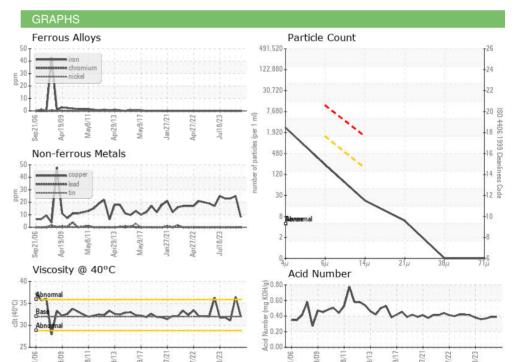



OIL ANALYSIS REPORT

140k T	article T	rend						
≘120k - 🖫		m m						
=100k + **	19	ım						
80k - Gok -	$- /\!\!/ \!\!/$							
ZUK	11							
96 Zep21/06	Apr19/09	May8/11	Apr29/13	May9/17	Jan27/21	Apr27/22	Jul18/23	

VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.03	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
	TIFO	and the section	11 11 /1		la fact a social	la ! a ! a O

I LOID I HOI LITT	ILO	method minioase			HISTORY	HISTOLYZ	
Visc @ 40°C	cSt	ASTM D445	32	32.0	36.5	31.1	


SAMPLE IMAGES

Bottom

Color

Laboratory Sample No.

: RP0027268 Lab Number : 06237770

Unique Number : 11126604

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 16 Jul 2024 **Tested** : 17 Jul 2024

Diagnosed : 18 Jul 2024 - Don Baldridge

Test Package : IND 2 (Additional Tests: PrtCount) Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

ENTERPRISE PRODUCTS

P.O. BOX 573 MONT BELVIEU, TX US 77580

Contact: TOMMY EDWARDS tedwards@eprod.com

T: (281)217-1411 F: (281)385-4327

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: TOMMY EDWARDS - ENTHOU