

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id
SL 3B
Component
Hydraulic System
Fluid
SHELL TELLUS S2 MX 46 (--- GAL)

DIAGNOSIS

Recommendation

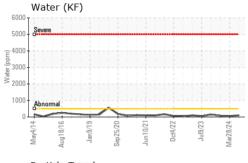
Resample at the next service interval to monitor. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.

Wear

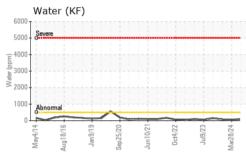
All component wear rates are normal.

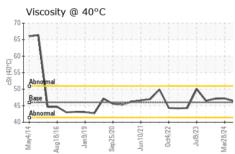
Contamination

The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The water content is negligible. The system and fluid cleanliness is acceptable.

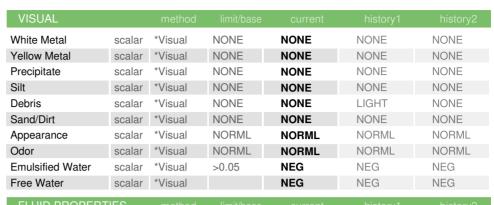

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


w/2014 Aug2016 Jan2019 Sep2020 Jan2021 0c2022 Ju2023 Mm2024						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		RP0037242	RP0028397	RP0028395
Sample Date		Client Info		03 Jul 2024	28 Mar 2024	21 Mar 2024
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	4	0	2
Chromium	ppm	ASTM D5185m	>20	0	0	0
Nickel	ppm	ASTM D5185m	>20	<1	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		<1	0	0
Aluminum	ppm	ASTM D5185m	>20	1	0	0
Lead	ppm	ASTM D5185m	>20	0	0	0
Copper	ppm	ASTM D5185m	>20	6	1	<1
Tin	ppm	ASTM D5185m	>20	0	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	0	0
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	0	0	3	0
Manganese	ppm	ASTM D5185m	0	1	0	0
Magnesium	ppm	ASTM D5185m	70	45	52	46
Calcium	ppm	ASTM D5185m	10	4	83	3
Phosphorus	ppm	ASTM D5185m	300	275	264	256
Zinc	ppm	ASTM D5185m	325	284	284	272
CONTAMINANTS	3	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	1	<1	<1
Sodium	ppm	ASTM D5185m		4	2	2
Potassium	ppm	ASTM D5185m	>20	3	0	0
Water	%	ASTM D6304	>0.05	0.010	0.005	0.007
ppm Water	ppm	ASTM D6304	>500	105	60	71
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4μm		ASTM D7647	>5000	1322	1705	1571
Particles >6µm		ASTM D7647	>1300	186	312	357
Particles >14μm		ASTM D7647	>160	11	29	28
Particles >21µm		ASTM D7647	>40	2	8	7
Particles >38μm		ASTM D7647	>10	0	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>19/17/14	18/15/11	18/15/12	18/16/12
FLUID DEGRADA	NOITA	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.35	0.36	0.35	0.39



OIL ANALYSIS REPORT

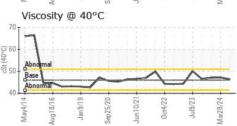


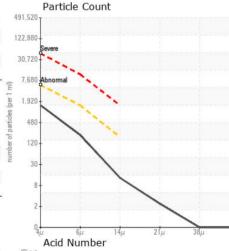
20k -	4µт 6µт 14µ	m m				A	
20k - 15k - 10k - 15k - 10k -							
10k -						1	
5k - 🕰	ormal		^		<u> </u>	1	L
0k			white Special	Acres de la constante de la co	SHOULD BE SHOWN	Jul9/23	Mar28/24

FLUID PROPER	THES	method			riistory i	HISTORY
Visc @ 40°C	cSt	ASTM D445	46.0	46.4	47.2	47.1

SAMPLE IMAGES	CANADI			\circ
	SAMPL	4E I	MAN	GES

Bottom


Color



GRAPHS Ferrous Alloys

Non-ferrous Metals

0.7 (mg KOH/g) 0.7 0.5 0.2

Certificate 12367

Laboratory Sample No. Lab Number

: 06238492 Unique Number : 11127326

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : RP0037242 Received : 16 Jul 2024 **Tested**

Test Package : IND 2

: 18 Jul 2024

Diagnosed : 18 Jul 2024 - Wes Davis

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

JOHNSON CONTROLS

1890 MINES RD PULASKI, TN US 38478

Contact: JEREMY ROSE jeremy.b.rose@adient.com

T: F:

Report Id: JOHPUL [WUSCAR] 06238492 (Generated: 07/18/2024 07:10:05) Rev: 1

Contact/Location: JEREMY ROSE - JOHPUL