PROBLEM SUMMARY Sample Rating Trend ISO Machine Id **6865545 (S/N 1995)** Component Compressor KAESER SIGMA (OEM) M-460 (--- GAL) ### **COMPONENT CONDITION SUMMARY** ### RECOMMENDATION No corrective action is recommended at this time. Oil and filter change at the time of sampling has been noted. Resample at the next service interval to monitor. | PROBLEMATIC T | EST RESULTS | | | | |-----------------|--------------|---------|-----------------|------| | Sample Status | | | ATTENTION |
 | | Particles >14μm | ASTM D7647 | >80 | 114 |
 | | Oil Cleanliness | ISO 4406 (c) | >/17/13 | 18/17/14 |
 | **Customer Id: BREATL** Sample No.: KCP50700 Lab Number: 05648950 Test Package: IND 2 To manage this report scan the QR code To discuss the diagnosis or test data: Jonathan Hester +1 919-379-4092 x4092 jhester@wearcheckusa.com To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com | RECOMMENDE | O ACTIONS | | | | |---------------|-----------|------|---------|---| | Action | Status | Date | Done By | Description | | Change Fluid | | | ? | Oil and filter change at the time of sampling has been noted. | | Change Filter | | | ? | Oil and filter change at the time of sampling has been noted. | # HISTORICAL DIAGNOSIS # **OIL ANALYSIS REPORT** Sample Rating Trend ISO 6865545 (S/N 1995) Compressor KAESER SIGMA (OEM) M-460 (--- GAL) ## **DIAGNOSIS** #### Recommendation No corrective action is recommended at this time. Oil and filter change at the time of sampling has been noted. Resample at the next service interval to monitor. #### Wear All component wear rates are normal. ### Contamination There is a moderate amount of particulates present in the oil. ### **Fluid Condition** The AN level is acceptable for this fluid. The condition of the oil is suitable for further service. | | | | | Aug2022 | | | |------------------|----------|--------------|------------|-------------|-----------|-----------| | SAMPLE INFORM | MATION | method | limit/base | current | history 1 | history 2 | | Sample Number | | | | KCP50700 | | | | Sample Date | | | | 01 Aug 2022 | | | | Machine Age | hrs | | | 802 | | | | Oil Age | hrs | | | 700 | | | | Oil Changed | | | | Changed | | | | Sample Status | | | | ATTENTION | | | | WEAR METALS | | method | limit/base | current | history 1 | history 2 | | Iron | ppm | ASTM D5185m | >50 | <1 | | | | Chromium | ppm | ASTM D5185m | >10 | 0 | | | | Nickel | ppm | ASTM D5185m | >3 | 0 | | | | Titanium | ppm | ASTM D5185m | >3 | 0 | | | | Silver | ppm | ASTM D5185m | >2 | 0 | | | | Aluminum | ppm | ASTM D5185m | >10 | 0 | | | | Lead | ppm | ASTM D5185m | >10 | 1 | | | | Copper | ppm | ASTM D5185m | >50 | 3 | | | | Tin | ppm | ASTM D5185m | >10 | <1 | | | | Vanadium | ppm | ASTM D5185m | | 0 | | | | Cadmium | ppm | ASTM D5185m | | 0 | | | | ADDITIVES | | method | limit/base | current | history 1 | history 2 | | Boron | ppm | ASTM D5185m | 0 | 0 | | | | Barium | ppm | ASTM D5185m | 90 | 0 | | | | Molybdenum | ppm | ASTM D5185m | 0 | 0 | | | | Manganese | ppm | ASTM D5185m | | <1 | | | | Magnesium | ppm | ASTM D5185m | 100 | 41 | | | | Calcium | ppm | ASTM D5185m | 0 | 0 | | | | Phosphorus | ppm | ASTM D5185m | 0 | 13 | | | | Zinc | ppm | ASTM D5185m | 0 | 4 | | | | Sulfur | ppm | ASTM D5185m | 23500 | 20955 | | | | CONTAMINANTS | | method | limit/base | current | history 1 | history 2 | | Silicon | ppm | ASTM D5185m | >25 | 2 | | | | Sodium | ppm | ASTM D5185m | | 9 | | | | Potassium | ppm | ASTM D5185m | >20 | <1 | | | | Water | % | ASTM D6304 | >0.05 | 0.024 | | | | ppm Water | ppm | ASTM D6304 | >500 | 246.3 | | | | FLUID CLEANLIN | ESS | method | limit/base | current | history 1 | history 2 | | Particles >4µm | | ASTM D7647 | | 2482 | | | | Particles >6µm | | ASTM D7647 | | 930 | | | | Particles >14µm | | ASTM D7647 | >80 | <u> </u> | | | | Particles >21μm | | ASTM D7647 | | 19 | | | | Particles >38μm | | ASTM D7647 | >4 | 1 | | | | Particles >71μm | | ASTM D7647 | | 0 | | | | Oil Cleanliness | | ISO 4406 (c) | >/17/13 | <u> </u> | | | | FLUID DEGRADA | TION | method | limit/base | current | history 1 | history 2 | | Acid Number (AN) | mg KOH/g | ASTM D8045 | 1.0 | 0.42 | | | ## **OIL ANALYSIS REPORT** | VISUAL | | method | limit/base | current | history 1 | history 2 | |--|---|---|--|-------------------------|-----------|--| | White Metal | scalar | *Visual | NONE | NONE | | | | Yellow Metal | scalar | *Visual | NONE | NONE | | | | Precipitate | scalar | *Visual | NONE | NONE | | | | Silt | scalar | *Visual | NONE | NONE | | | | Debris | scalar | *Visual | NONE | NONE | | | | Sand/Dirt | scalar | *Visual | NONE | NONE | | | | Appearance | scalar | *Visual | NORML | NORML | | | | Odor | scalar | *Visual | NORML | NORML | | | | Emulsified Water | scalar | *Visual | >0.05 | NEG | | | | Free Water | scalar | *Visual | | NEG | | | | FLUID PROPER | TIES | method | limit/base | current | history 1 | history 2 | | Visc @ 40°C | cSt | ASTM D445 | 45 | 44.9 | | | | SAMPLE IMAGE | S | method | limit/base | current | history 1 | history 2 | | Color | | | | | no image | no image | | Bottom | | | | | no image | no image | | | | | | | | | | GRAPHS | | | | | | | | Ferrous Alloys | | | | Particle Count | | | | Ferrous Alloys | | | 491,520 | Particle Count | 11 1 | T ²⁶ | | Ferrous Alloys | | | | | | J ²⁶ | | Ferrous Alloys iron annanana chromium occorronana nickel | | | 491,520 | | | +24 | | Ferrous Alloys | | | 491,520
122,880
30,720 | | | +24
+22 | | Ferrous Alloys iron iron nickel | *************************************** | *************************************** | 491,520
122,880
30,720
7,680 | | | +24
+22 | | Ferrous Alloys iron iron nickel | *************************************** | 000000000000000000000000000000000000000 | 491,520
122,880
30,720
7,680 | | | +24
+22 | | Ferrous Alloys iron mickel 2277 | | *************************************** | 491,520
122,880
30,720
7,680 | | | +24
+22 | | Ferrous Alloys iron chromium chromium chromium chromium chromium chromium chromium chromium | ls | *************************************** | 491,520
122,880
30,720
7,680 | | | +24
+22 | | Ferrous Alloys iron iron iron iron iron iron iron iro | ************************************** | *************************************** | 491,520
122,880
30,720
7,680 | | | -24
-22
-20 to 190 | | Ferrous Alloys iron iron iron iron iron iron iron iro | | 300030000000000000000000000000000000000 | 491,520
122,880
30,720
7,680
1,920
480 | | | -24
-22
-20 to 190 | | Non-ferrous Meta | ls | | 491,520 122,880 30,720 7,680 101 109 1,990 120 480 120 | | | +24
+22
+20 50 +446, 1333
+18 Ceanings | | Ferrous Alloys iron chromium nickel Non-ferrous Meta | S | 300000000000000000000000000000000000000 | 491,520
122,880
30,720
7,680
7,680
1,990
480
480
120
30 | | | 18 10 July 1997 1997 1997 1997 1997 1997 1997 199 | | Ferrous Alloys iron chromium nickel Non-ferrous Meta | | *************************************** | 491,520
122,880
30,720
7,680
7,680
1,990
480
480
120
30 | | | 124
122
120 50 446.1333 1133 1133 1133 1133 1133 1133 113 | | Non-ferrous Meta | ls | | 491,520 122,880 30,720 7,680 480 120,000 480 300 480 480 480 480 480 | Rbreemal 4 6j4 | 14μ 21μ | 18 10 July 1997 1997 1997 1997 1997 1997 1997 199 | | Non-ferrous Meta | s | *************************************** | 491,520 122,880 30,720 7,680 120,08 | Abreemal βμ Acid Number | 14µ 21µ | 18 103 desimilar to 10 t | | Non-ferrous Meta Viscosity @ 40°C Severe | Is | *************************************** | 491,520 122,880 30,720 7,680 120,08 | Abreemal βμ Acid Number | 14μ 21μ | 18 103 desimilar to 10 t | | Non-ferrous Meta Viscosity @ 40°C Severe | ls | | 491,520 122,880 30,720 7,680 120,08 | Abreemal βμ Acid Number | 14μ 21μ | 18 133 dealiness code 110 -10 -8 | | Non-ferrous Meta | ls | | 491,520 122,880 30,720 7,680 480 120,000 480 300 480 480 480 480 480 | Abreemal βμ Acid Number | 14μ 21μ | 18 133 dealiness code 110 -10 -8 | Laboratory Sample No. Lab Number ppm : KCP50700 : 05648950 Unique Number : 10143489 : WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 22 Sep 2022 Diagnosed : 26 Sep 2022 Diagnostician : Jonathan Hester 1737 ELLSWORTH INDUSTRIAL BLVD NW ATLANTA, GA BREWED TO SERVE RESTAURANT GROUP INC USA 30318 Contact: Service Manager **Test Package**: IND 2 (Additional Tests: KF, PrtCount) Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012) T: F: